

DULUEI I DI MI NAVAL POJICAADUATE DU MONTEREY, CALIFORNIA 98,43

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A COMPUTATION OF FIN-LINE IMPEDANCE

by

Byungyong Kim

December 1984

Thesis Advisor:

J. B. Knorr

Approved for public release; distribution unlimited

Real Press, and a state of the state of the

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Subtitle)	1	S. TYPE OF REPORT & PERIOD COVERED			
A Computation of Fin-Line I	mpedance	Master's Thesis.			
	mpoadmoo	December 1984			
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(3)		8. CONTRACT OR GRANT NUMBER(*)			
Byungyong Kim					
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT TASK			
Naval Postgraduate School		AREA & WORK UNIT NUMBERS			
Monterey, California 93943					
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
Naval Postgraduate School		December 1984			
Monterey, California 93943		13. NUMBER OF PAGES			
		107			
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		154 DECLASSIFICATION DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)		I			
Approved for public release	: distributio	n unlimited			
inperior for public former	,				
17. DISTRIBUTION STATEMENT (of the abstract entered in	n Block 20, 1f different from	m Report)			
18 SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)				
Fin-line Impedance					
-					
20 ARCTRACT (Continue on reverse side if persons, and	Identify by block number)				
The spectral domain solution	The spectral domain solution for the wavelength and				
characteristic impedance of a millimeter wave fin-line was					
originally published by Knorr and Shayda. The dispersion					
equations were subsequently reformulated by Knorr in a form					
more suitable for numerical computation.					
This thesis presents a reformulation of the equations for					
characteristic impedance for	the same purp	oose. The equations			

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

have been used to implement a computer program, FINIMP. The program runs smoothly without the overflow and underflow problems experienced by Knorr and Shayda. FINIMP data is compared with other existing data and good agreement is shown to establish the correctness of the FINIMP numerical results. Approved for public release; distribution is unlimited.

A Computation of Fin-line Impedance

by

Kim, Byungyong Major', Korean Air Force B.S.E.E., Korean Air Force Academy, 1977

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL December 1984

ABSTRACT

The spectral domain solution for the wavelength and characteristic impedance of a millimeter wave fin-line was originally published by Knorr and Shayda. The dispersion equations were subsequently reformulated by Knorr in a form more suitable for numerical computation.

This thesis presents a reformulation of the equations for characteristic impedance for the same purpose. The equations have been used to implement a computer program, FINIMP. The program runs smoothly without the overflow and underflow problems experienced by Knorr and Shayda. FINIMP data is compared with other existing data and good agreement is shown to establish the correctness of the FINIMP numerical results.

TABLE OF CONTENTS

I.	INTE	RODUCTION	•	•	•	•	•		9
	Α.	BACKGROUND AND RELATED WORK							9
	Β.	PURPOSE	•	•	•	•	•		11
II.	THEC	RETICAL ANALYSIS OF FIN_LINE					•		13
	Α.	FIELD AND BOUNDARY CONDITIONS	•	•		•	•		13
	в.	SPECTRAL DOMAIN APPROACH TO DISPERS	10	N					
		CHARACTERISTC	•	•		•			16
	C.	CHARACTERISTIC IMPEDANCE	•	•	•	•	•		25
III.	COME	PUTER PROGRAMMING			•		•		27
	Α.	NUMERICAL ANALYSIS					•		27
	Β.	COMPUTER PROGRAMMING AND LIMITATION		•	•	•	•		28
IV.	NUME	CRICAL RESULTS AND COMPARISONS				•			31
	Α.	RIDGED WAVEGUIDE	•	•	•		•		31
	в.	DIELECTRIC SLAB LOADED WAVEGUIDE .	•	•	•		•		34
	C.	SLOTLINE	•	•	•		•		37
	D.	SEVERAL FIN LINE IMPEDANCE CURVES	•	•		•	•		38
ν.	CONC	CLUSIONS AND RECOMMENDATIONS	•	•					47
	Α.	CONCLUSIONS		•	•	•	•		47
	Β.	RECOMMENDATIONS	•	•	•	•	•	•	48
APPENDI	EX A:	SPECTRAL DOMAIN MATRICES	•	•	•	•	•		49
APPENDI	IX B:	TIME AVERAGE POWER FLOW	•		•	•			57
APPENDI	EX C:	COMPUTER PROGRAM 'FINIMP'		•	•	•	•		87
LIST OF	F REF	FERENCES		•				-	106
INITIAI	DIS	STRIBUTION LIST							107

LIST OF FIGURES

1.1	3-Dimensional View of Fin-line Structure 10
2.1	Assumed Electric Field Component in Slot in
	x-direction versus x for Fin-line
3.1	Characteristic Impedance Z vs. Iteration for a
	Fin-line with b/D=18.8 h ₁ /D=18.8 h ₂ /D=17.8
	D=.005" \mathcal{E}_{r} = 2.2 f = 40.0GHZ
4.1	Characteristic Impedance Z vs. Frequency for a
	Ridged Waveguide
4.2	Characteristic Impedance Z vs. Frequency for a
	Ridged Waveguide
4.3	Characteristic Impedance Z vs. Frequency for a
	Slab Loaded Waveguide
4.4	Characteristic Impedance Z vs. Frequency for a
	Slot Line Waveguide
4.5	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=28.0 h _l /D=28.0 h _z /D=27.0
	$D=.005'' \epsilon_{r}=2.2$
4.6	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=28.0 h ₁ /D=28.0 h ₂ /D=27.0
	$D=.005'' \epsilon_r = 2.2 \ldots 40$
4.7	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=18.8 h;/D=18.8 hz/D=17.8
	D=.005" ϵ_{γ} = 2.2
4.8	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=18.8 h:/D=18.8 hz/D=17.8
	$D=.005'' \epsilon_r = 2.2 \ldots 42$
4.9	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=12.2 h _l /D=12.2 h _z /D=11.2
	$D=.005'' \epsilon_{\gamma} = 2.2$

4.10	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=12.2 h ₁ /D=12.2 h ₂ /D=11.2
	$D=.005'' \epsilon_r = 2.2 \ldots 44$
4.11	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=18.8 h1/D=28.2 h2/D=8.4
	$D=.005'' \ \epsilon_r = 2.2$
4.12	Characteristic Impedance Z vs. Frequency for a
	Fin-line With b/D=18.8 h,/D=28.2 h ₂ /D=8.4
	$D=.005'' \epsilon_r=2.2 \ldots 46$

•

ACKNOWLEDGMENT

I would like to thank Professor J. B. Knorr for his considerable help and guidance. Also, I would like to thank Dr. H-M. Lee for his counsel and inspirational suggestions.

Most importantly, I would like to thank my wife, Youngyoun, for her patience, understanding and encouragement during the development of this work.

I. INTRODUCTION

A. BACKGROUND AND RELATED WORK

The study of electromagnetic energy transmission is but one important area in microwave and millimeter-wave engineering, where the electromagnetic waves are travelling through some transmission medium, which provides the link between the transmitting and receiving part of a transmission system.

In recent years, fin-line has gained in importance as a transmission medium in millimeter wave circuit constructions [Ref. 1 - 4]. Fin-line has been found superior to microstrip at millimeter wavelengths as the former provides eased production tolerances, low dispersion, broad single mode bandwidth, moderate attenuation, better compatibility with hybrid devices, greater freedom from radiation and higher mode propagation, combined with the ability to construct simple transitions to conventional rectangular waveguide.

Figure 1.1 shows a 3-dimensional view of fin-line. The stucture may be viewed as a slotline with a shield, a ridged waveguide with _dielectric or a slab loaded waveguide with fins.

The fin-line structure was first proposed for millimeter wave integrated circuits in 1974 by Meier [Ref. 1]. An early paper by Meier described the propagation mode as a variation of dominant mode in ridged waveguide. His procedure requires a test measurement to determine the equivalent dielectric constant of the fin-line structure. This is both expensive and time consuming. Knorr and Kuchler [Ref. 5] presented a frequency dependent hybrid-mode analysis of slot line with open boundary using the spectral domain technique

9

Figure 1.1 3-Dimensional View of Fin-line Structure.

which was suggested by Itoh and Mittra [Ref. 6], in 1975. Subsequently, the paper of prime importance in the establishment of spectral domain technique for analyzing the fin-line structure, so-called shielded slotline. was pesented by Knorr and Shayda in 1980 [Ref. 3]. One of the advantages of the spectral domain approach is that it is numerically more efficient than the conventional methods that work directly in the space domain. This is due primarily to the fact that the process of Fourier transformation of the coupled integral equations in the space domain yields a pair of algebraic equations in the spectral domain that are relatively easier to handle. Another important advantage is that the Green's function takes a much simpler form in the transform domain, as compared to the space domain where no convenient form of the Green's function is known to exist.

B. PURPOSE

In solving the open boundary slotline problem, only exponential functions arise and there are no numerical problems during computation. For a closed boundary structure, however, hyperbolic functions are required. Knorr and Shayda [Ref. 3] found that overflow and underflow problems resulted during numerical computations. To eliminate these problems, extensive algebraic manipulation of the spectral domain equations is required.

This thesis presents the method to calculate the characteristic impedance of fin-line without overflow and underflow in equations. Therefore, this thesis is a direct extention of Knorr's work. This work is accomplished by lots of algebraic manipulations. In particular, since hyperbolic sine and cosine functions cause overflow and underflow errors, the equations developed by Knorr need to be put in a

11

form where only the hyperbolic tangent function appears. The characteristic impedance is computed after the spectral domain technique to find the dispersion characteristic.

Following the theoretical analysis, an explanation of the computer program used in determination of characteristic impedance is presented. Numerical results are then compared with known data for ridged waveguide, slab loaded waveguide, slot line and fin-line [Ref. 3]. This comparison establishes the accuracy of the numerical results.

II. THEORETICAL ANALYSIS OF FIN LINE

A. FIELD AND BOUNDARY CONDITIONS

The fin-line supports a hybrid field. The axial componants of TM and TE modes are then

$$E_{z} = k_{c}^{2} \phi^{e}(x, y) e^{Pz}$$
 (eqn 2.1)
$$H_{z} = k_{c}^{2} \phi^{h}(x, y) e^{Pz}$$
 (eqn 2.2)

where the scalar potential functions ϕ^e , ϕ^h satisfy the Helmholz equation, and we assume lossless propagation so that $\Gamma = \pm j\beta$. Further

$$K_{c_{k}}^{2} = K_{k}^{2} - \beta^{2}$$
 (eqn 2.3)

with $k_{\lambda}^{2} = \mathcal{W}_{\mu\lambda} \mathcal{E}_{\lambda}$, $\lambda = 1, 2, 3$, defining spatial region of finline as stated in Figure 1.1.

Through Maxwell's curl equations the transverse field components are then determined by these axial components and can be given as

$$E_{x} = \left(\int \frac{\partial \phi^{e}}{\partial x} - j \omega \mu \frac{\partial \phi^{h}}{\partial y} \right) e^{Pz} \qquad (eqn \ 2.4)$$

$$E_{y} = \left(\Gamma \frac{\partial \phi^{e}}{\partial y} + j W M \frac{\partial \phi^{h}}{\partial \chi} \right) e^{PZ} \qquad (eqn \ 2.5)$$

$$H_{x} = \left(P\frac{\partial \phi^{h}}{\partial x} + jW\varepsilon \frac{\partial \phi^{e}}{\partial y}\right)e^{Pz} \qquad (eqn \ 2.6)$$

$$H_{y} = \left(\Gamma \frac{\partial \phi^{h}}{\partial y} - j \omega \varepsilon \frac{\partial \phi^{e}}{\partial \chi} \right) e^{Pz} \qquad (eqn \ 2.7)$$

where propagation in the z direction is assumed. We will also assume here that $\mathcal{E}_1 = \mathcal{E}_3 = \mathcal{E}_0$ and $\mathcal{E}_2 = \mathcal{E}_0 \mathcal{E}_r$.

At y = h₁ + D : Applying boundary conditions at the walls in region 1, tangential field components must be zero.

$$E_{zI}(\chi, h_i + D, z) = 0 \qquad (eqn 2.8)$$

$$E_{XI}(X,h_i+D,z) = O \qquad (eqn 2.9)$$

At y = D:

At the interface between region 1 and region 2, tangential field components must be continuous.

$$F_{21}(X,D,Z) = E_{22}(X,D,Z)$$
 (eqn 2.10)

$$\mathsf{Exi}(\mathbf{X}, \mathsf{D}, \mathbf{Z}) = \mathsf{Ex2}(\mathbf{X}, \mathsf{D}, \mathbf{Z}) \qquad (eqn \ 2.11)$$

Also the electric fields at y = D will exist only in the slot.

$$E_{zl}(X,D,z) = \begin{cases} 0 & |X| \ge \frac{w}{2} \\ e_{z}(X)e^{Pz} & |X| < \frac{w}{2} \end{cases}$$
 (eqn 2.12)

$$E_{X|}(X, D, Z) = \begin{cases} 0 & |X| \ge \frac{\omega}{2} \\ e_{X}(X) e^{PZ} & |X| < \frac{\omega}{2} \end{cases}$$
 (eqn 2.13)

Similarly, tangential magnetic fields must be discontinuous by corresponding surface current densities.

$$H_{ZI}(X, D, Z) - H_{Z2}(X, D, Z) = \begin{cases} J_x(x) e^{PZ} & |X| \ge \frac{W}{2} \\ 0 & |X| < \frac{W}{2} \end{cases}$$

$$H_{X1}(X, D, Z) - H_{X2}(X, D, Z) = \begin{cases} j_{z}(x) e^{PZ} & |x| \ge \frac{W}{2} \\ 0 & |x| < \frac{W}{2} \end{cases}$$

AT y = 0:

The tangential field components at the interface between region 2 and 3 must also be continuous.

 $\overline{E}_{Z2}(\Lambda, 0, Z) = E_{Z3}(\Lambda, 0, Z) \qquad (eqn 2.16)$

$$E_{x2}(X,0,z) = E_{x3}(X,0,z)$$
 (eqn 2.17)

$$H_{Z2}(X, 0, Z) = H_{Z3}(X, 0, Z) \qquad (eqn 2.18)$$

$$H_{x2}(x, 0, z) = H_{x3}(x, 0, z)$$
 (eqn 2.19)

At $y = -h_2$:

Once again at the shield wall in region 3, the tangential field components must be zero.

 $E_{Z3}(X, -h_2, Z) = 0$ (eqn 2.20)

$$E_{x3}(\chi, -h_2, Z) = 0$$
 (eqn 2.21)

At $x = \pm b/2$:

The final boundary conditions occur at x = b/2 where the tangential components must be zero in all regions.

$$E_{zi}(\pm b/2, y, z) = 0$$
 (eqn 2.22)

$$E_{x\lambda}(\pm b/2, 4, z) = 0$$
 (eqn 2.23)

B. SPECTRAL DOMAIN APPROACH TO DISPERSION CHARACTERISTC

The scalar potential functions can be transformed into the spectral domain via Fourier transform defined as

$$\overline{F}\left\{\phi(x,y)\right\} = \overline{\Phi}(dm,y) = \int_{-\infty}^{\infty} \phi(x,y) e^{j dm x} dx .$$
(eqn 2.24)

The scalar potential functions satisfy Helmholz's equations in the three spatial regions, thus

$$\nabla_t^2 \dot{\phi}_i + K_{ci}^2 \dot{\phi}_i = 0 \qquad (eqn \ 2.25)$$

where denotes the two dimensional Laplacian operator in the transverse (x,y) direction. The Helmholtz equation 2.25 are transformed into

$$\frac{\frac{\partial}{\partial y^2}}{\partial y^2} = (\alpha m^2 - Kc^2) \oint_{\lambda} (\alpha m, y) \qquad (eqn \ 2.26)$$

where $V_{\lambda}^{2} = \chi_{m}^{2} - K_{c\lambda}^{2} = \chi_{m}^{2} + \rho^{2} - K$. Above equation has solutions after applying boundary conditions at $y = D + h_{1}$, and $y = -h_{2}$.

$$\Phi_{1}^{e}(\alpha, y) = A^{e}(\alpha) \operatorname{signh} Y_{1}(D+h_{1}-y) \qquad (eqn \ 2.27)$$

$$\Phi_2^e(\alpha_n, y) = B^e(\alpha_n) \operatorname{signh} Y_2 y + C^e(\alpha_n) \cosh Y_2 y \qquad (eqn 2.28)$$

$$\Phi_3^e(\alpha_n, y) = D^e(\alpha_n) \operatorname{simh} Y_3(h_2 + y) \qquad (eqn \ 2.29)$$

$$\Phi_{i}^{h}(am, y) = A^{h}(am)\cosh y_{i}(D+h_{i}-y) \qquad (eqn \ 2.30)$$

$$\Phi_{2}^{h}(\alpha_{m}, y) = B^{h}(\alpha_{m}) \operatorname{simh} Y_{2} y + c^{h}(\alpha_{m}) \cosh Y_{2} y \qquad (eqn \ 2.31)$$

$$\overline{\Phi}_{3}^{h}(\alpha, y) = D^{h}(\alpha, y) \cosh \gamma_{3}(h_{2}+y) \qquad (eqn \ 2.32)$$

where

$$\alpha_{m} = \begin{cases} \frac{m2\pi}{b} & \phi^{h} even \qquad (eqn \ 2.33) \\ \frac{(2m-1)\pi}{b} & \phi^{h} odd \qquad (eqn \ 2.34) \end{cases}$$

The following observation about the solutions in region 2 must be emphasized. Any wave on this inhomogeneous waveguide structure will partly travel through air and partly through the dielectric slab. It is important to observe at this point that y_{i}^{2} may be less than zero in any of the three regions of the structure under certain conditions. When $d_m = 0$ and k_i approaches k_o (where k_o is the wave number for free space), β is less than k; and so $\gamma_{i}^{2} < 0$. Under this condition the hyperbolic functions in all three regions are replaced by trigonometric functions. If k $_{o}$ < eta < k_2 , then γ_1^2 and γ_3^2 are greater than zero and $\gamma_2^2 < 0$ for some values of and the trigonometric functions replace the hyperbolic functions in the spatial region 2 only. This suggests that the nature of the field is dependent upon the values of the transform variable, . For the conditions when $\gamma_{i}^{2} < 0$, $\gamma_{i}^{"}$ replaces γ_{i} such that $(\gamma_{i}^{"})^{2} = -\gamma_{i}^{2}$. The

eight unknown coefficients A through D are not independent, but can be related to each other through the continuity conditions of the field components at the interfaces between the three spatial regions.

If we denote the Fourier transforms of x- and z-directed current density and electric field component by

$\widetilde{E}_{X}(\alpha_{M}) = F\left\{ e_{X}(X) \right\}$	(eqn	2.35)
$\widetilde{E}_{z}(dm) = F \left\{ e_{z}(x) \right\}$	(eqn	2.36)
$\widetilde{J}_{X}(dm) = F\left\{ \dot{J}_{X}(x) \right\}$	(eqn	2.37)
$\widetilde{J}_{z}(d_{m}) = F\left\{ j_{z}(\lambda) \right\}$	(eqn	2.38)

The resulting set of linear equations may be written in matrix form as follows:

$$\begin{bmatrix} M_{E} \end{bmatrix} \begin{bmatrix} A^{e} \\ B^{e} \\ \vdots \\ c^{h} \\ D^{h} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ E_{K} \\ E_{E} \end{bmatrix}$$
(eqn 2.39)
$$\begin{bmatrix} M_{J} \end{bmatrix} \begin{bmatrix} A^{e} \\ B^{e} \\ \vdots \\ c^{h} \\ D^{h} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$
(eqn 2.40)

18

The matrices [ME] and [MJ] differ in only the last two rows. Each is a square 8×8 matrix. Using equations (2.39) and (2.40), we may write

$$\begin{bmatrix} M_{\mathcal{T}} \end{bmatrix} \begin{bmatrix} M_{\mathcal{E}} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ \vdots \\ \vdots \\ \widetilde{E}_{\mathcal{X}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ \vdots \\ \widetilde{J}_{\mathcal{X}} \\ \vdots \\ \widetilde{J}_{\mathcal{Z}} \end{bmatrix} .$$

(eqn 2.41)

From equation (2.41), using the four elements in the lower right hand corner of the matrix MJ ME , we obtain

$$\left[\begin{array}{c} \widehat{\mathsf{G}}_{1}(\mathsf{d}\mathsf{m},\beta) & \widehat{\mathsf{G}}_{2}(\mathsf{d}\mathsf{m},\beta) \\ \widehat{\mathsf{G}}_{3}(\mathsf{d}\mathsf{m},\beta) & \widehat{\mathsf{G}}_{4}(\mathsf{d}\mathsf{m},\beta) \end{array} \right] \left[\begin{array}{c} \widetilde{\mathsf{E}}_{X}(\mathsf{d}\mathsf{m}) \\ \widetilde{\mathsf{E}}_{Z}(\mathsf{d}\mathsf{m}) \end{array} \right] = \left[\begin{array}{c} \widetilde{\mathsf{J}}_{X}(\mathsf{d}\mathsf{m}) \\ \widetilde{\mathsf{J}}_{Z}(\mathsf{d}\mathsf{m}) \end{array} \right] \\ \left[\begin{array}{c} \widetilde{\mathsf{E}}_{2}(\mathsf{d}\mathsf{m}) \end{array} \right] = \left[\begin{array}{c} \widetilde{\mathsf{J}}_{X}(\mathsf{d}\mathsf{m}) \\ \widetilde{\mathsf{J}}_{Z}(\mathsf{d}\mathsf{m}) \end{array} \right] \\ \left[\begin{array}{c} \operatorname{eqn} 2.42 \end{array} \right]$$

where the 2 x 2 matrix $\left[\widetilde{G}\right]$ contains the Fourier transforms of the components of the dyadic Green's function for this structure.

A solution to equation (2.42) is obtained using the Method of Moments [Ref. 7]. For this problem, we have chosen to approximate the field between the fins as shown in Figure 2.1:

$$e_{x}(x) = \begin{cases} 1 & |x| \leq \frac{w}{2} \\ 0 & \text{elsewhere} \qquad (\text{eqn } 2.43) \end{cases}$$

$$e_{z}(x) = 0$$
 . (eqn 2.44)

Figure 2.1 Assumed Electric Field Component in Slot in x-direction versus x for Fin-line.

The dispersion problem is now reduced to the form

$$\sum_{m=-\infty}^{\infty} \widetilde{F_{i}}(\alpha_{m},\beta) \left| \widetilde{E_{x}}(\alpha_{m}) \right|^{2} = 0 \qquad (\text{eqn } 2.45)$$

.

where

$$\widetilde{E}_{X}(dn) = \int_{-\frac{W}{2}}^{\frac{W}{2}} e_{X}(x) e^{jd_{M}x} dx = AW \frac{\sin(dn W/2)}{dn W/2}$$

A numerical search for the value of which satisfies equation (2.45) yields the propagation constant for the dominant fin-line mode.

From the equation (2.39)

$$M_{11}A^{e} + M_{12}B^{e} + M_{13}C^{e} = 0$$
 (eqn 2.46)

$$M_{21}A^{e} + M_{22}B^{e} + M_{23}C^{e} + M_{25}A^{h} + M_{26}B^{h} + M_{27}C^{h} = 0 \qquad (eqn 2.47)$$

$$m_{g1}^{E} A^{e} = D^{2} \widetilde{E}_{z}$$
 (eqn 2.48)

$$m_{71}A^{e} + m_{75}A^{h} = D^{2}\widetilde{Ex}$$
 (eqn 2.49)

$$m_{33}C^e + m_{34}D^e = 0$$
 (eqn 2.50)

$$m_{43} C^e + m_{44} D^e + m_{46} B^h + m_{48} D^h = 0$$
 (eqn 2.51)

$$m_{57}C^{h} + M_{58}D^{h} = 0$$
 (eqn 2.52)

$$M_{62}B^{e} + M_{64}D^{e} + M_{67}C^{h} + M_{68}D^{h} = 0$$
 (eqn 2.53)

From equations (2.50) and (2.52)

$$D^{e} = -\frac{M_{33}}{M_{34}} c^{e}$$
 (eqn 2.54)

$$D_{m}^{h} = - \frac{M_{57}}{M_{58}} C^{h} . \qquad (eqn \ 2.55)$$

Using equations (2.48) and (2.49)

$$A^{e} = \left(\frac{1}{m_{81}^{e}}\right) D^{2} \tilde{E}_{2}$$
 (eqn 2.56)

$$A^{h} = \left(\frac{1}{m_{y5}^{e}}\right) D^{2} \widetilde{E_{x}} - \left(\frac{m_{\overline{y}_{1}}^{e}}{m_{\overline{y}_{5}}^{e} m_{\overline{g}_{1}}^{e}}\right) D^{2} \widetilde{E_{z}} . \qquad (eqn \ 2.57)$$

Substituting in equations (2.51) and (2.53), we obtain

$$B^{e} = \left(\frac{M64 M 33}{M62 M 34}\right) C^{e} + \left(\frac{M68 M 57}{M62 M 58} - \frac{M67}{M62}\right) C^{h}$$
(eqn 2.58)

$$B^{h} = \left(\frac{M44}{M46} + \frac{M}{34} - \frac{M43}{M46}\right) c^{e} + \left(\frac{M48}{M46} + \frac{M}{58}\right) c^{h} . \qquad (eqn \ 2.59)$$

Substituting equations (2.48), (2.49), (2.51), d (2.53) in equations (2.46) and (2.47) we obtain

$$C^{e} = \left(\frac{a_{12}}{|\mathsf{D}|}\right) \left(\frac{\mathsf{M}_{25}}{\mathsf{M}_{75}^{e}}\right) D^{2} \widetilde{\mathsf{E}}_{X} - \left(\frac{a_{22}}{|\mathsf{D}|}\right) \left(\frac{\mathsf{M}_{11}}{\mathsf{M}_{81}^{e}}\right) D^{2} \widetilde{\mathsf{E}}_{Z} - \left(\frac{a_{12}}{|\mathsf{D}|}\right) \left(\frac{\mathsf{M}_{25}}{\mathsf{M}_{75}^{e}} - \frac{\mathsf{M}_{21}}{\mathsf{M}_{81}^{e}}\right) D^{2} \widetilde{\mathsf{E}}_{Z}$$

$$(eqn \ 2.60)$$

$$c^{h} = -\left(\frac{a_{11}}{|D|}\right)\left(\frac{M_{D5}}{M_{75}}\right)\vec{D}\vec{E}_{x} + \left(\frac{a_{11}}{|D|}\right)\left(\frac{M_{D5}}{M_{75}}\frac{M_{71}}{M_{75}} - \frac{M_{21}}{M_{81}}\right)\vec{D}\vec{E}_{z} + \left(\frac{a_{21}}{|D|}\right)\left(\frac{M_{11}}{M_{81}}\right)\vec{D}\vec{E}_{z} \qquad (eqn \ 2.61)$$

where

$$|D| = a_{11} a_{22} - a_{21} a_{12} = j (d_{11} d_{22} - d_{21} d_{12}) (V_2 D) simh (V_2 D) cosh (V_2 D).$$

We define

$$a_{11} = \left[M_{13} + M_{12} \left(\frac{M_{64} M_{33}}{M_{62} M_{34}} \right) \right]$$

= $d_{11} \cosh \left(\frac{\gamma_2}{2} P \right)$ (eqn 2.62)

$$a_{12} = \left[M_{12} \left(\frac{M_{68} M_{577}}{M_{62} M_{58}} \right) - \frac{M_{67}}{M_{62}} \right]$$

= j d_{12} (Y_2 P) simh (Y_2 P) (eqn 2.63)

$$a_{21} = \left[M_{23} + M_{22} \left(\frac{M_{64} M_{33}}{M_{62} M_{34}} \right) + \\ M_{26} \left(\frac{M_{44} M_{33}}{M_{46} M_{34}} - \frac{M_{43}}{M_{46}} \right) \right] \\ = d_{21} \cosh\left(\frac{N_2 D}{2} \right) \qquad (eqn \ 2.64)$$

$$Q_{22} = \left[M_{27} + M_{26} \left(\frac{M_{48} M_{57}}{M_{46} M_{58}} \right) + M_{22} \left(\frac{M_{68} M_{57}}{M_{62} M_{58}} - \frac{M_{67}}{M_{62}} \right) \right]$$

= j d_{22} (γ_{2} P) Simh(γ_{2} P) (eqn 2.65)

Also we define

$$d_{II} = -(K_{c2}D)^{2} \left[1 + \frac{(W \mathcal{E}_{3}D)(Y_{3}D)^{2}(K_{c2}D)^{4}}{(W \mathcal{E}_{2}D)(Y_{2}D)(Y_{2}D)(K_{c3}D)^{2}} - \frac{(Y_{2}D) \tanh(Y_{2}D)}{(Y_{3}D) \tanh[(Y_{3}D)(h_{7}b)]} \right] \qquad (eqn \ 2.66)$$

$$d_{12} = (k_{c2}D)^{2} \left[\frac{(d_{m}D)(\beta D)}{(W E_{2}D)(Y_{2}D)} \left(\frac{(k_{c2}D)^{2}}{(k_{c3}D)^{2}} - 1 \right) \right]$$
 (eqn 2.67)

$$d_{21} = - (AnD)(\beta D) \left[\frac{(\omega E_3 D)(Y_3 D)(K_{c2} D)^2}{(\omega E_2 D)(B_2 D)(K_{c3} D)^2} + \frac{(Y_2 D)(Y_3 D)(K_{c3} D)^2}{(Y_3 D)(X_3 D)$$

$$d_{22} = (W,UD) \left[(1 + \frac{(k_{c2}D)(V_{3}D) \tanh [(V_{3}D)(h_{1}/b)]}{(K_{c3}D)^{2}(J_{2}D) \tanh (J_{2}D)} + \left[\frac{(d_{M}D)^{2}(\beta D)^{2}}{(W,UD)(W \epsilon_{2}D)(V_{2}D)^{2}} \right] \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}} - 1 \right] \right]. \quad (eqn \ 2.69)$$

Nomalized constants are defined as follows

.

$$(K_{c1}D)^{2} = (K_{c3}D)^{2} = (2\pi)^{2} [1 - (\sqrt[3]{h})^{2}] (\frac{p}{h})^{2}$$
$$(K_{c2}D)^{2} = (2\pi)^{2} [E_{r} - (\sqrt[3]{h})^{2}] (\frac{p}{h})^{2}$$
$$W_{M}D = 240 \pi^{2} (\frac{p}{h})$$
$$W_{E_{1}}D = W_{E_{3}}D = \frac{1}{60} (\frac{p}{h})$$

$$\begin{split} \omega \varepsilon_{2} D &= \varepsilon_{r} / 60 (D/\Lambda) \\ \beta D &= 2 \pi (P/\Lambda) (\Lambda/\Lambda) \\ \alpha'_{m} D &= \begin{cases} n 2 \pi (\frac{D}{b}) & \varphi^{h} even \\ (2m+1) \pi (\frac{D}{b}) & \varphi^{h} odd \end{cases} \\ (\gamma_{1} D)^{2} &= (\gamma_{3} D)^{2} = (\alpha'_{m} D)^{2} + (2\pi)^{2} [(\Lambda/\Lambda)^{2} - 1] (P/\Lambda)^{2} \\ (\gamma_{2} D)^{2} &= (\alpha'_{m} D)^{2} + (2\pi)^{2} [(\Lambda/\Lambda)^{2} - \varepsilon_{r}] (P/\Lambda)^{2}. \end{split}$$

C. CHARACTERISTIC IMPEDANCE

The definition of the characteristic impedance for an ideal TEM transmission line is uniquely given by static quantities. Since the fin-line supports a hybrid mode, no unique definition of the characteristic impedance can be found.

A useful definition, however, is

$$Z_{o} = \frac{V_{o}^{2}}{2Pavg} \qquad (eqn \ 2.70)$$

where Vo is the slot voltage defined as

$$V_0 = \int_{-w_2}^{w_2} A d\chi = 1$$
 (eqn 2.71)

 $e_{\mathbf{x}}(\mathbf{x})$ is arbitrarily selected as 1/W so that $W * e_{\mathbf{x}}(\mathbf{x}) = 1$. Pave is given by

$$Pavg = \frac{1}{2} \operatorname{Re} \iint_{S} \overline{E} \times \overline{H}^{*} \cdot \widehat{az} \, da$$
$$= \frac{1}{2} \operatorname{Re} \iint_{S} (Ex Hy^{*} - Ey Hx^{*}) \, dx \, dy \, . \qquad (eqn \ 2.72)$$

Pasval's theorem is applied to eq(2.88) to obtain

$$Pavg = \frac{1}{2} \operatorname{Re} \frac{1}{b} \sum_{m=-\infty}^{\infty} \int_{-h_2}^{D+h_1} \left[\operatorname{Ex} (\alpha, y) Hy^{*} (\alpha, y) - \operatorname{Ey} (\alpha, y) Hx^{*} (\alpha, y) \right] dy$$

This expression must be evaluated in each of the three regions of the fin-line shown in Figure 1.1 Therefore the power flow may be expressed by

$$Pavg = \frac{1}{2b} \sum_{M=-M}^{\infty} (P_1 + P_2 + P_3) \qquad (eqn \ 2.73)$$

Since P_{avg} can be determined after finding the value of n'/n. Equations including only hyperbolic tangent functions and the slot voltage V_o have been developed the characteristic impedance. The lengthy algebraic manipulations are shown in appendix B.

III. COMPUTER PROGRAMMING

A. NUMERICAL ANALYSIS

The computation of characteristic impedance is based upon the solution to the dispersion chracteristic problem for the fin-line under consideration. In other words, the wave propagation constant or wavelength ratio χ'/λ must be known before any other investigations can be started since only in this case are the scalar potential functions in the transform domain known. The computer program for the wavelength ratio χ'/λ is already developed by Prof. Knorr. The next task is the preparation of the appropriate equations for the numerical evaluation of the time average power flow. For ease in numerical calculations and for programming purposes all geometric parameters are normalized as follows;

- h₁/D ; fin location relative to the positive "y" side wall normalized with respect to D
- $h_{\mbox{2}}/D$; fin location relative to the negative "y" side wall normalized with respect to D

b/D; waveguide height normalized with respect to D. It is observed that for the power flow computations the infinite integration in equation (2.88) is replaced by an infinite series due to the discrete nature of the transform variable d_m . Preliminary numerical investigations of the coefficients of these series indicated an even distribution with respect to the variable so that computation time can be saved by summing over a half interval only.

The time average power flow equations are prepared for six different cases as follows;

case 1 ; $(\gamma_1 D)^2 < 0$ in region 1 case 2 ; $(\gamma_1 D)^2 > 0$ in region 1 case 3 ; $(\gamma_2 D)^2 < 0$ in region 2 and $(\gamma_3 D)^2 < 0$

27

in region 3 case 4; $(\gamma_2 D)^2 < 0$ in region 2 and $(\gamma_3 D)^2 > 0$ in region 3 case 5; $(\gamma_2 D)^2 > 0$ in region 2 and $(\gamma_3 D)^2 < 0$ in region 3 case 6; $(\gamma_2 D)^2 > 0$ in region 2 and $(\gamma_3 D)^2 > 0$ in region 3

After this preparation of the equations for the computer programming, the only remaining task. is to investigate the numerical.integration with regard to its limits and the procedure to be used. One of the limits of the summation discussed previously extends to infinity so it is necessary to determine an appropriate at which to truncate the computations.

From the representative examples shown in Figure 3.1, it is seen that the coefficients in this infinite series are found to decay rapidly so that a finite approximation yields good results. Figure 3.1 shows the characteristic impedance as a function of n, the number of terms in the truncated series, for various slot widths. The value n = 50 is sufficiently large to be considered infinite for all practical purposes. It is noted that when w/b = 1, $Ex(d_m) = 0$ for n > 0. Therefore, whenever w/b = 1 only the n= 0 term is computed in impedance calculations.

B. COMPUTER PROGRAMMING AND LIMITATION

The first part of the FINIMP computer program finds the λ'/λ which makes equation (2.45) equal to zero. The assumption is that λ'/λ is between 0.1 and 3 in the giga hertz range and continuously decreases as the frequecy is increased. Since this program is very sensitive there is a possibility that the wrong value is searched. In that case, we can easily notice because there is abruptly jumped value.

28

Figure 3.1 Characteristic Impedance Z vs. Iteration for a Fin-line with $b/D=18.8 h_1/D=18.8 h_2/D=17.8 D=.005'' cr=2.2 f=40.0GHZ..$

At that time, if the assumed range of λ'/Λ is resticted to a smaller interval than before the correct value can be obtained.

The rest of the FINIMP computer program is the computation of characteristic impedance. Since all equations are composed of hyperbolic tangent functions, there is no overflow in the computer program. But if $(\gamma_{\bar{\lambda}}D)^2 < 0$ tangent functions replace the hyperbolic tangent functions. At that time, there is a possibity of overflow because tan $n\pi/2$ is infinite for n = 1, 3, 5, In that case the tangent function should be set to some value which is the maximum value of computer ability $(46^{63} \cdot (1-16^{-6}) > |\tan(x)|)$.
IV. NUMERICAL RESULTS AND COMPARISONS

To check the accuracy of the numerical results gererated by the computer program, comparisons are made with data available in the literature for ridged waveguide, slab loaded waveguide, slotline, empty waveguide and fin-line as outlined in [Ref. 3].

A. RIDGED WAVEGUIDE

When = 1 and w/D < 1 or when the dielectric substrate thickness D is reduced to zero, the fin-line structure becomes ridged waveguide with zero thickness ridges.

The impedance of the ridged waveguide has the following relations [Ref. 8],

$$Z_{0} = \frac{Z_{0}\infty}{\left[1 - \left(\frac{3}{Ac}\right)^{2}\right]^{\frac{1}{2}}}$$
 (eqn 4.1)

When the guide width and the slot width are equal, the ridged waveguide becomes an ordinary rectangular waveguide for which

$$\overline{Z_{\infty}} = \sqrt{\frac{u_{\circ}}{\varepsilon_{r}\varepsilon_{o}}} \frac{2a}{b} \qquad (eqn \ 4.2)$$

When the guide width is increased at fixed slot width, the characteristic impedance at infinite frequency and the free space cutoff wavelength go asymptotically to

Figure 4.1 Characteristic Impedance Z vs. Frequency for a Ridged Waveguide.

Figure 4.2 Characteristic Impedance Z vs. Frequency for a Ridged Waveguide.

 $Z_{0\infty} = \sqrt{\frac{\mu_0}{\epsilon_r \epsilon_0}} \frac{2b}{\alpha} . \qquad (eqn \ 4.3)$

The cutoff wavelength λ_c was determined from [Ref. 11] for several values of W/b.

Equation (4.1) was then used to calculate the characteristic impedances and these values were compared with the results using spectral domain method of the computer program discussed in chapter \mathbf{I} . Two results are very close together. Figure 4.1 and 4.2 shows the computer results. These figures agree with the previous Knorr and Shayda's results.

B. DIELECTRIC SLAB LOADED WAVEGUIDE

A variation of the fin-line structure of Figure 1 where w/b = 1 and $\mathcal{E}_{\mathbf{Y}} > 1$ results in a dielectric slab loaded rectangular waveguide. The slab loaded waveguide has also been studied by Vartanian et al [Ref. 9]. They consider a guide with the slab centered in the waveguide and they present an analytical expression for the voltage impedance $Z\mathbf{p}\mathbf{v}$ at the center of the slab. The impedance computed in this analysis was specified at the edge of the dielectric slab. Therefore a relationship between the two impedances must be defined before any comparison can be made. The impedance at the edge of the slab can be easily defined by the expression

$$Z_o = Z_{PV} \left(\frac{E_x^{edge}}{E_x^{center}}\right)^2$$

(eqn 4.4)

Figure 4.3 Characteristic Impedance Z vs. Frequency for a Slab Loaded Waveguide.

Figure 4.4 Characteristic Impedance Z vs. Frequency for a Slot Line Waveguide.

where E_{χ}^{edge} is the field at the edge of the slab and E_{χ}^{center} is the field at the center of slab, thus

$$Z_{o} = Z_{pV} \cos^{2}\left(\frac{qc}{25}\right)$$
 (eqn 4.5)

where the various quantities are defined in [Ref. 9] as

$$S = C/2$$
 (eqn 4.6)

$$\left(\frac{q}{s}\right)^{2} = \mathcal{E}r\left(\frac{2\pi}{\lambda_{0}}\right)^{2} - \left(\frac{2\pi}{\lambda_{g}}\right)^{2} \qquad (\text{eqn } 4.7)$$

$$q^{2} = (2\Pi)^{2} \left(\frac{S}{\Lambda}\right)^{2} \left[\mathcal{E}_{r} - \left(\frac{\lambda}{\Lambda}\right)^{2}\right] \qquad (\text{eqn } 4.8)$$

and c = D is the dielectric slab thickness.

The characteristic impedance of a slab loaded guide is computed using the spectral domain method. The results were compared with equation (4.5) results and [Ref. 3]. Good agreements are obtained. Figure 4.3 shows the slab loaded wave guide impedance .

C. SLOTLINE

If w/D < 2 and $\mathcal{E}_{\mathbf{Y}}$ is sufficiently high for the fin-line structure of Figure 1.1, the field is tightly bound to the slot. For this condition the presence of the shield will have little effect if the walls are sufficiently far removed from the slot. In this case the fin-line will behave like a slotline. This behavior is illustrated in Figure 4.4 where the characteristic impedance of a fin-line with w/D = 1, $\mathcal{E}_r = 20$ have been plotted. Also these results are in good agreements with [Ref. 3].

D. SEVERAL FIN LINE IMPEDANCE CURVES

Fin-lines are generally enclosed with a shield that is compatible with the dimensions of the standard rectangular waveguides for the millimeter wavebands. Above 22GHZ, all these guides have aspect ratios b/a = 0.5. Further, the fins are most often centered in the guide and printed using D = 0.005 inch substrate with $\mathcal{E}_{\Upsilon} = 2.2$.

Figures 4.5 - 4.12 show the impedance computed for finline with WR(28), WR(19) and WR(12) rectangular waveguide shields. These figures may be compared with data for the same structures as presented in [Ref. 3]. Such a comparison shows excellent agreement for all but the small values of W/b. For small values of W/b (W/b = 0.1, W/b = 0.05, W/b = 0.02), the results of the FINIMP program show lower impedances than the results presented in [Ref. 3]. As the W/b is smaller, the difference is larger; for W/b = 0.1, 2 - 5 ohm is lower, for W/b = 0.05, 9 - 15 ohm is lower and for W/b = 0.02, 19 - 25 ohm is lower.

38

Figure 4.5 Characteristic Impedance Z vs. Frequency for a Fin-line With $b/D=28.0 h_1/D=28.0 h_2/D=27.0 D=.005'' E_{Y}=2.2$.

Figure 4.6 Characteris c Impedance Z vs. Frequency
for a Fin-line With b D=28.0 h₁/D=28.0 h₂/D=27.0
D=.005" Er =2.2.

Figure 4.7 Characteristic Impedance Z vs. Frequency for a Fin-line With $b/D=18.8 h_1/D=18.8 h_2/D=17.8 D=.005'' \epsilon_r = 2.2$.

Figure 4.8 Characteristic Impedance Z vs. Frequency for a Fin-line With b/D=18.8 h₁/D=18.8 h₂/D=17.8 D=.005" E_Y =2.2.

Figure 4.9 Characteristic Impedance Z vs. Frequency for a Fin-line With b/D=12.2 h₁/D=12.2 h₂/D=11.2 D=.005" Er =2.2.

Figure 4.10 Characteristic Impedance Z vs. Frequency for a Fin-line With b/D=12.2 h₁/D=12.2 h₂/D=11.2 D=.005" Er =2.2.

Figure 4.11 Characteristic Impedance Z vs. Frequency for a Fin-line With b/D=18.8 h₁/D=28.2 h₂/D=8.4 D=.005" Er =2.2.

Figure 4.12 Characteristic Impedance Z vs. Frequency for a Fin-line With b/D=18.8 h₁/D=28.2 h₂/D=8.4 D=.005" ϵ_{r} =2.2.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The spectral domain technique used in conjunction with Galerkin's method has been presented to calculate the characteristic impedance for the dominant mode of the fin-line. It has been shown that a matrix formulation of the problem permits the elements of the dyadic Green's function to be calculated. Solving the matrix equations leads to containing only hyperbolic tangent function. These equations circumvent the overflow and underflow problems which occurred using the previous formulation presented by Knorr and Shayda.

Numerical results obtained using this method have been presented and compared to other existing data. Good agreement has been obtained in all cases thus establishing the accuracy and applicability of the method for the full range of structure parameters.

There is a possibility that tangent functions may cause an overflow problem if $(\gamma_i p)^2$ is less than zero. In this case, the value of tangent function can be obtained within the capability of the available IBM 3033 used.

In this thesis, paticular interest is devoted to the computation of fin-line impedance. Fin-line may exhibit the characteristics of ridged waveguide, dielectric slab loaded waveguide, slot lines, and conventional rectangular waveguide. All of these structures are fin-line substructures. So, the computation of fin-line impedance permits all of these structures to be analyzed.

47

B. RECOMMENDATIONS

Coupled fin-line will find future use in building directional couplers and filters. For this purpose, the normal mode wavelengths and impedances are required. A special but important case is that of symmetrical lines. Coupled finlines for which the normal modes are odd and even. The program described here may be extended to cover this case by following the procedures outlined by Knorr and Kuchler for coupled slotlines [Ref. 5]. This should be accomplished to improve the utility of the program described in this thesis.

APPENDIX A SPECTRAL DOMAIN MATRICES

The continuity conditions are transformed via equation (2.24) into the two dimesional Fourier domain. The solutions to the two Helmholtz equations given by equations (2.27)-(2.32) are substituted. Finally a matrix form of linear equations is derived as follows;

[m.	MIZ	MI3	0	0	0	0	0	IT Ae		$[\circ]$
M24	/M22	/M23	0	M25	M26	Mez	0	Be		0
0	0	M33	M34	0	0	0	0	C ^e		0
0	0	M43	/m44	0	/M46	0.	M48	De		0
0	0	0	0	0	0	M57	/M 58	Ah	-	0
0	MK2	0	M64	0	0	M61	/M68	Bh		0
mai	0	0	0	е M75	0	0	0	Ch		Êx
mEi	0	Ð	0	0	0	0	0	llon,]	EZ J
C	U									
mi	M12	M13	0	0	0	0	0	[A ^e]		٢٥١
mai	11122	M13	0	mi5	Mab	men	0	Be		0
0	0	/M33	M134	0	0	0	0	C ^e		0
0	0	M43	M144	. 0	M4.6	0	M48	De	_	0
0	0	0	0	0	0	/H51)	/11158	Ah	-	0
0	M62	0	M64	0	0	M67	M68	Bh		0
		•	•	J	Ma	J	0	ch		€
	0	0	0		- 11 Y/K	/ H Y J J	-			I VA I

49

The matrix elements of $[M_E]$ and $[M_J]$ are normalized at this point with respect to D, the dielectric substrate thickness. The normalized matrix elements are now presented in two forms. The first of the element equations is for $(Y; D)^2 > 0$ and the second is for $(Y; D)^2 < 0$. For the matrices $[M_E]$ and $[M_J]$, the elements $m_{||}$ through m_{68} are the same.

$$m_{11} = \begin{cases} (K_{c1}D)^{2} \sin h \left[(Y_{1}D) (h/b) \right] \\ j (K_{c1}D)^{2} \sin h \left[(Y_{1}''D) (h/b) \right] \end{cases}$$

$$m_{12} = \begin{cases} -(K_{c2}D)^{2} \sinh (hD) \\ -j (K_{c2}D)^{2} \sin h (hD) \\ -j (K_{c2}D)^{2} \cosh (hD) \end{cases}$$

$$m_{13} = \begin{cases} -(K_{c2}D)^{2} \cosh (hD) \\ -(K_{c2}D)^{2} \cosh (hD) \\ -(K_{c2}D)^{2} \cos h (hD) \end{cases}$$

$$M_{14} = M_{15} = M_{16} = M_{17} = M_{18} = 0$$

$$M_{14} = \begin{cases} (d_m D) (\beta D) simh [(y_1 D)(h_0)] \\ j (d_m D) (\beta D) simh [(y_1 D)(h_0)] \end{cases}$$

$$M_{12} = \begin{cases} -(d_m D) (\beta D) simh (y_2 D) \\ -j (d_m D) (\beta D) simh (y_2 D) \\ -j (d_m D) (\beta D) sim (y_0 D) \end{cases}$$

$$M_{13} = \begin{cases} -(d_m D) (\beta D) sim (y_0 D) \\ -(d_m D) (\beta D) cosh (y_2 D) \\ -(d_m D) (\beta D) cos (y_0 D) \end{cases}$$

 $M_{24} = 0$

$$m_{25} = \begin{cases} j(w,u_{0})(Y_{1}_{0}) \le imh [(Y_{1}_{0})(h_{0})] \\ -j(w,u_{0})(Y_{1}_{0}') \le im [(Y_{1}'_{0})(h_{0})] \end{cases}$$

$$M_{26} = \begin{cases} j(W,UD)(Y_2D) \cosh(Y_2D) \\ -(W,UD)(Y_2''D) \cos(Y_2''D) \end{cases}$$

$$m_{27} = \begin{cases} j(W,UD)(Y_{2}D) \text{ simh } (Y_{2}D) \\ -j(W,UD)(Y_{2}D) \text{ sim } (Y_{2}D) \end{cases}$$

 $M_{28} = M_{31} = M_{32} = 0$

$$M_{33} = \begin{cases} (K_{c2}D)^2 \\ (K_{c2}D)^2 \end{cases}$$

$$m_{34} = \begin{cases} -(K_{c3}D)^{2} \operatorname{simh} [(Y_{3}D)(h_{0})] \\ -j(K_{c3}D)^{2} \operatorname{sim} [(Y_{3}'D)(h_{0})] \end{cases}$$

 $M_{35} = M_{36} = M_{37} = M_{38} = M_{41} = M_{42} = 0$

$$m_{43} = \begin{cases} (d_m D)(\beta D) \\ (d_m D)(\beta D) \end{cases}$$

$$M_{44} = \begin{cases} -(d_m D)(\beta D) \text{ simh } [(Y_3 D)(h_7 D)] \\ -j(d_m D)(\beta D) \text{ sim } [(Y_3^{"} D)(h_7 D)] \end{cases}$$

$$M_{45} = 0$$

$$m_{46} = \begin{cases} -j(\omega,\mu D)(\lambda_2 D) \\ (\omega,\mu D)(\lambda_2'' D) \end{cases}$$

$$M_{4\eta} = 0$$

$$m_{48} = \begin{cases} j(W,UD)(N_3D) \text{ simh } E(N_3D)(h_7/D) \\ -j(W,UD)(N_3'D) \text{ sim } E(N_3'D)(h_7/D) \end{cases}$$

 $M_{51} = M_{52} = M_{53} = M_{54} = M_{55} = M_{56} = 0$

$$m_{5\eta} = \begin{cases} (k_{c2}D)^2 \\ (k_{c2}D)^2 \end{cases}$$

$$M_{58} = \begin{cases} -(k_{c3}D)^{2}\cosh\left[(Y_{3}D)(h^{2}/D)\right] \\ -(k_{c3}D)^{2}\cos\left[(Y_{3}^{*}D)(h^{2}/D)\right] \end{cases}$$

$$m_{61} = 0$$

$$\dot{m}_{62} = \begin{cases} J(W \varepsilon_2 D)(V_2 D) \\ -J(W \varepsilon_2 D)(V_2' D) \end{cases}$$

$$M_{63} = 0$$

$$m_{64} = \begin{cases} -j(\omega \varepsilon_{3}D)(\gamma_{3}D)\cosh\left[(\gamma_{3}D)(\gamma_{3}D)\right] \\ (\omega \varepsilon_{3}D)(\gamma_{3}D)\cos\left[(\gamma_{3}D)(\gamma_{3}D)\right] \end{cases}$$

 $m_{65} = m_{66} = 0$

$$m_{67} = \begin{cases} (d_m D)(\beta D) \\ (d_m D)(\beta D) \end{cases}$$

$$m_{68} = \begin{cases} -(\alpha m D)(\beta D)\cosh[(\lambda_{3} D)(\lambda_{7} D)] \\ -(\alpha m D)(\beta D)\cos[(\lambda_{3}^{m} D)(\lambda_{7} D)] \end{cases}$$

$$m_{71}^{\mathcal{E}} = \begin{cases} (dmD)(\beta D) \ \text{simh} \ \left[(Y_1 D)(h_{70}) \right] \\ j \ (dmD)(\beta D) \ \text{sim} \ \left[(Y_1^* D)(h_{70}) \right] \end{cases}$$

$$m_{\eta 2}^{\xi} = m_{\eta 3}^{\xi} = m_{\eta 4}^{\xi} = 0$$

$$m_{\eta 5}^{\mathcal{E}} = \begin{cases} j(\omega, \mu d)(\gamma_{1} d) \text{ simh } [(\gamma_{1} d)(\gamma_{2} d)] \\ -j(\omega, \mu d)(\gamma_{1}'' d) \text{ sim} [(\gamma_{1}'' d)(\gamma_{2} d)] \end{cases}$$

$$\mathcal{M}_{76}^{\mathcal{E}} = \mathcal{M}_{77}^{\mathcal{E}} = \mathcal{M}_{78}^{\mathcal{E}} = 0$$

$$m_{\delta I}^{\varepsilon} = \begin{cases} (K_{c1}D)^{2} \operatorname{simh} \left[(Y_{1}D)(h/b) \right] \\ j(K_{c1}D)^{2} \operatorname{sim} \left[(Y_{1}''D)(h/b) \right] \end{cases}$$

$$m_{82}^{E} = m_{83}^{E} = m_{84}^{E} = m_{85}^{E} = m_{86}^{E} = m_{87}^{E} = m_{88}^{E} = 0$$

$$m_{71}^{J} = m_{72}^{J} = m_{73}^{J} = m_{74}^{J} = 0$$

$$m_{75}^{J} = \begin{cases} (k_{c_1}D)^2 \cosh \left[(\gamma_1 D) (h_{0}) \right] \\ (k_{c_1}D)^2 \cos \left[(\gamma_1^{\prime}D) (h_{0}) \right] \end{cases}$$

$$m_{76}^{J} = \begin{cases} -(K_{c2}D)^{2} \operatorname{simh}(Y_{2}D) \\ -j(K_{c2}D)^{2} \operatorname{sim}(Y_{2}^{"}D) \end{cases}$$

$$M_{77}^{J} = \begin{cases} -(K_{c2}D)^{2}\cosh(k_{2}D) \\ -(K_{c2}D)^{2}\cos(Y_{2}''D) \end{cases}$$

$$M_{78}^{J} = 0$$

$$m_{81}^{J} = \begin{cases} -j (\omega \varepsilon_1 D)(\gamma_1 D) \cosh [(\gamma_1 D)(h/D)] \\ (\omega \varepsilon_1 D)(\gamma_1'' D) \cos [(\gamma_1'' D)(h/D)] \end{cases}$$

$$m_{g2}^{J} = \begin{cases} -j(\omega \mathcal{E}_{2}D)(\mathcal{Y}_{2}D)\cosh(\mathcal{Y}_{2}D)\\ (\omega \mathcal{E}_{2}D)(\mathcal{Y}_{2}^{"}D)\cos(\mathcal{Y}_{2}^{"}D) \end{cases}$$

$$m_{83}^{J} = \begin{cases} -j(\omega \epsilon_2 D)(\lambda D) \operatorname{simh}(\lambda D) \\ j(\omega \epsilon_2 D)(\lambda D) \operatorname{sim}(\lambda D) \end{cases}$$

$$M_{84}^{\mathrm{J}} = 0$$

$$m_{85}^{J} = \begin{cases} (d_{M}D)(\beta D)\cosh[(Y_{1}D)(h_{0})] \\ (d_{M}D)(\beta D)\cos[(Y_{1}'D)(h_{0}'D)] \end{cases}$$

$$m_{ab}^{J} = \begin{cases} (d_m D)(\beta D) \cosh \left[(Y_1 D)(h_0) \right] \\ (d_m D) (\beta D) \cos \left[(Y_1 D)(h_0) \right] \end{cases}$$

$$M_{87}^{J} = \begin{cases} -(d_{m}D)(\beta D) simh(Y_{2}D) \\ -j(d_{m}D)(\beta D) sim(Y_{2}^{\prime\prime}D) \end{cases}$$

$$M_{88}^{\mathrm{J}} = \mathrm{O}$$

APPENDIX B

TIME AVERAGE POWER FLOW

The following expression for the coefficients A^{e} through D^{h} are derived from equations (2.54) - (2.61).

If $(\gamma_1 D)^2 < 0$

$$A^{e} = -j \left[\frac{D^{e} \widetilde{E}_{2}}{(k_{c1}D)^{e} sim [(y_{1}^{e}D)(h_{D}^{h})]} \right]$$

$$A^{h} = \int \left[\frac{(k_{c_{1}}D)^{2}D^{2}\widetilde{E_{x}} - (d_{n}D)(\beta D)D^{2}\widetilde{E_{z}}}{(\omega, \mu P)(k_{c_{1}}D)^{2}(Y_{1}^{\mu}D) sim[(Y_{1}^{\mu}D)(h_{y}D)]} \right]$$

If $(\dot{\gamma}_{i} D)^{2} > 0$

$$A^{e} = \frac{D^{2} E_{z}}{(k_{c1}D)^{2} simh[(Y_{1}D)(h_{0}^{\prime}/\beta)]}$$

$$A^{h} = -j \left[\frac{(k_{c1}D)^{2}D^{2} \widehat{E}_{X} - (d_{m}D)(\beta D)D^{2} E_{z}}{(w_{m}P)(Y_{1}D)(k_{c1}D)^{2} simh[(Y_{1}D)(h_{0}^{\prime})]} \right]$$

$$C^{e} = \frac{d_{12}D^{2}\widetilde{E}_{x} - d_{22}D^{2}\widetilde{E}_{z}}{d_{12}D^{2}\widetilde{E}_{x} - d_{22}D^{2}\widetilde{E}_{z}}$$

1 - 2

$$det \cos(Y_{1}^{"}D)$$

$$det \cos(Y_{1}^{"}D)$$

$$det (Y_{1}^{"}D) sim(Y_{1}^{"}D)$$

where det =
$$d_{11} d_{22} - d_{21} d_{12}$$

If $(Y_2D)^2 > 0$
 $C^e = \frac{d_{12}D^e \tilde{E}_x - d_{21}D^e \tilde{E}_z}{det \cosh(Y_2D)}$
 $C^h = \int \left[\frac{d_{11}D^e \tilde{E}_x - d_{21}D^e \tilde{E}_z}{det(X_2D) \sinh(Y_2D)}\right]$
If $(Y_2D)^2 < 0$ and $(Y_3D)^2 < 0$
 $B^e = -\int \left[\frac{(\omega E_3D)(Y_3'D)(K_{12}D)^2}{(\omega K_2D)^2 \tan[(Y_2'D)(K_{12}D)^2]}\right] \left[\frac{d_{12}D^e \tilde{E}_x - d_{12}D^e \tilde{E}_z}{det \cos(Y_2'D)}\right]$
 $+\int \left[\frac{(\omega D)(\beta D)[(K_{12}D)^2 - (K_{12}D)^2]}{(\omega MD)(Y_1'D)(K_{12}D)^2}\right] \left[\frac{d_{12}D^e \tilde{E}_x - d_{12}D^e \tilde{E}_z}{det (Y_2'D) \sin(Y_2'D)}\right]$
 $B^h = \left[\frac{(x_{11}D)(\beta D)[(K_{12}D)^2 - (K_{12}D)^2]}{(\omega MD)(Y_2'D)(K_{12}D)^2}\right] \left[\frac{d_{12}D^e \tilde{E}_x - d_{12}D^e \tilde{E}_z}{det \cos(Y_{12}D)}\right]$
 $+\left[\frac{(Y_3'D)(E_{12}D)^2 + \tan[(Y_3'D)X_{12}D)(K_{12}D)^2}{(Y_2'D)(K_{12}D)^2}\right] \left[\frac{d_{12}D^e \tilde{E}_x - d_{12}D^e \tilde{E}_z}{det \cos(Y_{12}D)}\right]$
 $+\left[\frac{(Y_3'D)(K_{12}D)^2 + \tan[(Y_3'D)X_{12}D)}{(Y_2'D)(K_{12}D)^2}\right] \left[\frac{d_{12}D^e \tilde{E}_x - d_{12}D^e \tilde{E}_z}{det (Y_2'D) \sin(Y_2'D)}\right]$

$$D^{e} = -j \left[\frac{(k_{c2}D)^{2} (d\mu D E_{x} - d\mu D E_{z})}{(det \cos (V_{2}^{*}D)(k_{c3}D)^{2} \sin [(V_{3}^{*}D)(h_{7}^{*}D)]} \right]$$

$$D^{h} = -j \left[\frac{(K_{c2}D)^{2} (d_{11} \vec{D} \cdot \vec{E}_{x} - d_{21} \vec{D} \cdot \vec{E}_{z})}{\det(Y_{2}^{\mu}D) \sin(Y_{2}^{\mu}D) (K_{c3}D)^{2} \cos[(Y_{3}^{\mu}D) (h^{\mu}D)]} \right]$$

If
$$(\gamma_2 D)^2 < 0$$
 and $(\gamma_3 D)^2 > 0$

$$B^{e} = -j \left[\frac{(WE_{3}D)(Y_{3}D)(K_{c3}D)^{2}}{(WE_{3}D)(Y_{2}'D)(K_{c3}D)^{2}} \tan h[(Y_{3}D)(Y_{3}'D)(Y_{3}'D)(Y_{3}'D)] \left[\frac{d_{11}D^{2}E_{x}}{det \cos(Y_{2}'D)} \right] \right] \\ +j \left[\frac{(d_{11}D)(BD)[(K_{c3}D)^{2} - (K_{c3}D)^{2}}{(WE_{2}D)(Y_{2}'D)(K_{c3}D)^{2}} \right] \left[\frac{d_{11}D^{2}E_{x}}{det(Y_{2}'D) \sin(Y_{2}'D)} \right] \right] \\ B^{h} = \left[\frac{(d_{11}D)(BD)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(WAD)(Y_{2}'D)(K_{c3}D)^{2}} \right] \left[\frac{d_{11}D^{2}E_{x}}{det \cos(Y_{2}'D)} \right] \\ - \left[\frac{(Y_{3}D)(BD)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(Y_{2}'D)(K_{c3}D)^{2}} \right] \left[\frac{d_{11}D^{2}E_{x}}{det \cos(Y_{2}'D)} \right] \\ D^{e} = \frac{(K_{c1}D)^{2}(d_{12}D^{2}E_{x} - d_{22}D^{2}E_{z})}{(Y_{2}'D)(K_{c3}D)^{2}} \left[\frac{d_{11}D^{2}E_{x} - d_{22}D^{2}E_{z}}{det(Y_{2}'D)\sin(Y_{2}'D)} \right] \\ D^{h} = -j \left[\frac{(K_{c1}D)^{2}(d_{12}D^{2}E_{x} - d_{22}D^{2}E_{z})}{(det(Y_{2}'D)(K_{c3}D)^{2} \cosh(Y_{2}'D)(W_{2}'D)} \right] \right]$$

If
$$(\gamma_1 D)^2 > 0$$
 and $(\gamma_3 D)^2 < 0$

$$B^{e} = \left[\frac{(W_{23}D)(Y_{3}D)(K_{23}D)^{2}}{(W_{23}D)(Y_{23}D)(Y_{23}D)^{2}} + \left[\frac{(d_{n}D)(BD)[(K_{23}D)^{2} - (K_{23}D)^{2}]}{(W_{23}D)(Y_{23}D)(Y_{23}D)^{2}}\right] \left[\frac{d_{n}D^{2}\tilde{K}_{n} - d_{n}D^{2}\tilde{E}_{n}}{det(Y_{23}D) - (K_{23}D)^{2}}\right] \left[\frac{d_{n}D^{2}\tilde{E}_{n} - d_{n}D^{2}\tilde{E}_{n}}{det(Y_{23}D) - (K_{23}D)^{2}}\right] \left[\frac{d_{n}D^{2}\tilde{E}_{n} - d_{n}D^{2}\tilde{E}_{n}}{det(Y_{23}D) - (Y_{23}D)(K_{23}D)^{2}}\right] \left[\frac{d_{n}D^{2}\tilde{E}_{n} - d_{n}D^{2}\tilde{E}_{n}}{det(Y_{23}D) - (Y_{23}D)(K_{23}D)^{2}}\right]$$

$$D^{e} = -j \left[\frac{(K_{22}D)^{2}(d_{n}D^{2}\tilde{E}_{n} - d_{21}D^{2}\tilde{E}_{n})}{(det(Y_{22}D) - (Y_{22}D)(K_{23}D)^{2} \cos[(Y_{3}'D)(Y_{2}D)(Y_{2}D)]}\right]$$
If $(Y_{2}D)^{2} > 0$ and $(Y_{3}D)^{2} > 0$

$$B^{e} = \left[\frac{(W \in BD)(Y_{3}D)(K \in D)}{(W \in D)(Y_{2}D)(K \in BD)} \right] \left[\frac{d_{12}D \in \overline{X} - d_{22}D \in \overline{Z}}{det \cosh(D)} \right]$$

+
$$\left[\frac{(d_m D)(\beta D)[(k_{c2}D)^2-(k_{c3}D^2)]}{(W \epsilon_2 D)(\lambda_2 D)(k_{c3}D^2)}\right]\left[\frac{d_{11}D \epsilon_x^2 - d_2}{det(\lambda_2 D)simh(\lambda_2 D)}\right]$$

$$B^{h} = \int \frac{[d_{m}D](BD)[(k_{2}D)^{2}-(k_{3}D)^{2}][d_{12}D\tilde{E}x-d_{12}D\tilde{E}z]}{(W,UD)(V_{2}D)(k_{3}D)^{2}} det \cosh(V_{2}D)}$$

+
$$\int \left[\frac{(Y_3D)(K_{22}D)^2 tamh[(Y_3D)(h_{3}b)]}{(Y_2D)(K_{23}D)^2} \right] \left[\frac{d_{11}D^2 \tilde{E}_x - d_{21}D^2 \tilde{E}_z}{det(Y_2D)simh(Y_{2D})} \right]$$

$$D^{e} = \frac{(k_{0}D)^{2}(d_{12}D^{2}\tilde{E}_{x} - d_{22}D^{2}\tilde{E}_{z})}{\det\cosh(Y_{2}D)(k_{c_{3}}D)^{2}\sinh[(Y_{3}D)(h_{7})]}$$

$$D^{h} = j \left[\frac{(K_{22}D)^{2} (d_{11}D^{2}Ex - d_{21}D^{2}Ez)}{\det (Y_{2}D) \operatorname{simh} (Y_{2}D) (K_{c3}D)^{2} \cosh \left[(Y_{3}DX^{h}/D) \right]} \right]$$

From the above equations If $(\gamma_{1} D)^{2} < 0$

$$\frac{A^{e} \cdot (A^{e})^{*}}{D^{4}} = \frac{\tilde{E}_{z}^{2} [1 + \tan^{2}[(Y_{1}^{''}D)^{*}(h_{0}^{'})]}{(k_{1}D)^{4} \tan^{2}[(Y_{1}^{''}D)^{(h_{0}^{'})}]}$$

$$\frac{A^{h} (A^{h})^{*}}{D^{4}} = \frac{[(K_{1}D)^{*} \tilde{E}_{x} - (d_{n}D)(\dot{P}D)\tilde{E}_{z}]^{2}[1 + \tan^{2}[\partial_{1}^{"}DX^{h}/\partial_{z}]]}{(W,UD)^{*}(Y_{1}^{"}D)^{2}(K_{c1}D)^{4} \tan[(\partial_{1}^{"}DX^{h}/\partial_{z})]}$$

$$\frac{A^{e} (A^{\dagger})^{\dagger}}{D^{4}} = -\frac{\widetilde{E}_{\overline{e}} \left[(K_{cl} D)^{\dagger} E_{x} - (A_{n} D) (B^{\dagger} D) \widetilde{E}_{\overline{e}} \left[(I + \tan^{\dagger} \left[(U^{\dagger}_{n} D) (h^{\prime}_{n} D) \right] \right]}{(W_{n} U D) (V^{\dagger}_{n} D) (K_{cl} D)^{4} \tan^{2} \left[(V^{\dagger}_{n} D) (h^{\prime}_{n} D) \right]}$$

$$\frac{(A^{e})^{\star} \cdot A^{h}}{D^{4}} = \frac{A^{e} \cdot (A^{h})^{\star}}{D^{4}}$$

If
$$(\gamma_{1} D)^{2} > 0$$

$$\frac{A^{e} (A^{e})^{*}}{D^{4}} = \frac{\widetilde{E}_{z}^{2} [1 - \tanh^{2} [(1/D)(h/D)]]}{(K_{cl} D)^{4} \tanh^{2} [(1/D)(h/D)]}$$

$$\frac{A^{h} \cdot (A^{h})^{\dagger}}{D^{4}} = \frac{\left[(K_{c1}D)^{2}\widetilde{E_{x}} - (d_{n}D)(BD)\widetilde{E_{z}}\right]\left[1 - \tanh^{2}(Y_{i}D)(h_{i}C)\right]}{(W_{M}D)^{2}(Y_{i}D)^{2}(K_{c1}D)^{4} \tanh^{2}[(Y_{i}D)(h_{i}C)]}$$

$$\frac{A^{e} (A^{h})^{*}}{D^{4}} = j \left[\frac{\tilde{E}_{2} \left[(K_{c1}D)^{2} \tilde{E}_{x} - (d_{n}D)(\beta D) E_{2} \right] \left[1 - tonh^{2} \left[(Y_{1}D)(h'_{0}) \right]}{(K_{c1}D)^{4} (W, UD)(Y_{1}D) tonh^{2} \left[(Y_{1}D)(h'_{0}) \right]} \right] \right]$$

$$\frac{(A^e)^{\star} A^h}{D^4} = - \frac{A^e (A^h)^{\star}}{D^4}$$

If $(\gamma_2 D)^2 < 0$

$$\frac{c^{e} \cdot (c^{e})^{*}}{D^{4}} = \left[\frac{d_{12}\tilde{E}_{x} - d_{22}\tilde{E}_{z}}{det}\right]^{2} \left[1 + \tan^{2}(Y_{u}^{u}D)\right]$$

$$\frac{c^{h} \cdot (c^{h})^{*}}{D^{4}} = \left[\frac{d_{n}\tilde{E}_{x} - d_{21}\tilde{E}_{z}}{det(Y_{u}^{u}D)}\right]^{2} \left[\frac{1 + \tan^{2}(Y_{u}^{u}D)}{towi(Y_{u}^{u}D)}\right]$$

$$\frac{c^{e} \cdot (c^{h})^{*}}{D^{4}} = j \left[\frac{(d_{12}\tilde{E}_{x} - d_{22}\tilde{E}_{z})(d_{n}\tilde{E}_{x} - d_{21}\tilde{E}_{z})}{det^{2}}\right] \left[\frac{1 + \tan^{2}(Y_{u}^{u}D)}{(Y_{u}^{u}D)tow(Y_{u}^{u}D)}\right]$$

$$\frac{(c^{ey*} \cdot c^{h}}{D^{4}} = -\frac{c^{e} \cdot (c^{h})^{*}}{D^{4}}$$

If $(Y_2D)^2 > 0$ $\frac{c^{e.}(c^{e})^{*}}{D^4} = \left[\frac{du\widetilde{Ex} - du\widetilde{Ez}}{det(Y_2D)}\right]^2 \left[1 - tamh^2(Y_2D)\right]$ $\frac{c^{h.}(c^{h})^{*}}{D^4} = \left[\frac{du\widetilde{Ex} - du\widetilde{Ez}}{det(Y_2D)}\right]^2 \left[\frac{1 - tamh^2(Y_2D)}{tamh^2(Y_2D)}\right]$ $\frac{c^{e.}(c^{h})^{*}}{D^4} = -j \left[\frac{(du\widetilde{Ex} - du\widetilde{Ez})(du\widetilde{Ex} - du\widetilde{Ez})}{det^2}\right] \left[\frac{1 - tamh^2(Y_2D)}{(Y_2D)}\right]$

$$\frac{c^{e}t^{\star}.ch}{D^{4}} = -\frac{c^{e}.cht^{\star}}{D^{4}}$$

If
$$(\gamma_{1}D)^{2} < 0$$
 and $(\gamma_{3}D)^{2} < 0$

$$\frac{B^{e} \cdot (B^{e})^{*}}{P^{4}} = \left[\frac{(\omega \mathcal{E}_{3} D)(Y_{3}^{*} D)(\mathcal{K}_{c3} D)^{2}}{(\omega \mathcal{E}_{2} D)(Y_{3}^{*} D)(\mathcal{K}_{c3} D)^{2}(Y_{3}^{*} D)(\mathcal{K}_{c2} D)^{2}} - 2 \left[\frac{(\omega \mathcal{E}_{3} D)(Y_{3}^{*} D)(\mathcal{K}_{c2} D)^{2}}{(\omega \mathcal{E}_{3} D)(Y_{3}^{*} D)(\mathcal{K}_{c2} D)^{2}} \right] \left[\frac{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)}{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right] \left[\frac{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)}{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right] \left[\frac{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)}{(\omega \mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right]^{2} \left[\frac{(\omega \mathcal{E}_{2} (\mathcal{E})^{*})}{(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right] \left[\frac{(\omega \mathcal{E}_{2} (\mathcal{E})^{*})}{(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right]^{2} \left[\frac{(\omega \mathcal{E}_{2} (\mathcal{E})^{*})}{(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)(\mathcal{E}_{2} D)^{2}} \right]^{2} \left[\frac{(\omega \mathcal{E})^{*}}{(\mathcal{E}_{2} D)^{*}} \right] \left[\frac{\mathcal{E}^{e} \cdot (\mathcal{E})^{*}}{(\mathcal{E}_{2} D)} \right]^{2} \left[\frac{(\omega \mathcal{E})^{*}}{(\mathcal{E}_{2} D)^{*}} \right]^{2} \left[\frac{(\omega \mathcal{E})^{*}}{(\mathcal{E})^{*}} \right]^{2} \left[\frac{(\omega \mathcal{E})^{*}}{$$

$$\begin{bmatrix} (\frac{1}{3}\frac{1}{D})(\frac{1}{2}\frac{1}{D})\frac{1}{2}\frac$$

$$\frac{(B^{c})^{*} \cdot B^{h}}{D^{4}} = - \frac{B^{c} \cdot (B^{h})^{*}}{D^{4}}$$

$$\frac{B^{e}(c^{h})^{*}}{D^{4}} = \left[\frac{(\omega \varepsilon_{3} D)(J_{3}^{*} D)(K_{c_{2}} D)^{2}}{(\omega \varepsilon_{2} D)(J_{c}^{*} D)(K_{c_{3}} D)^{*} \tan[(J_{3}^{*} D)(X_{b}^{*} J)]}\right] \left[\frac{c^{e}(c^{h})^{*}}{j D^{4}}\right]$$

$$- \left[\frac{(d_n D)(\beta D)[(k_{c2}D)^2 - (k_{c3}D^2]]}{(\omega \epsilon_2 D)(\gamma_2'' D)(k_{c3}D)^2} \right] \left[\frac{ch.(ch)^{*}}{D^{*}} \right]$$

$$\frac{(B^{e})^{\star} \cdot c^{h}}{D^{4}} = \frac{B^{e} \cdot (c^{h})^{\star}}{D^{4}}$$

$$\frac{B^{e.}(e^{t})^{t}}{D^{4}} = -j \left[\frac{(WE_{3}D)(Y_{3}^{*}D)(K_{c2}D)^{2}}{(WE_{2}D)(Y_{2}^{*}D)(K_{c3}D)^{2} tan[(Y_{3}^{*}D)(h_{0}^{*}D)]} \right] \left[\frac{e.(e^{t})^{t}}{D^{4}} \right]$$

$$-j \left[\frac{(\omega n D)(\beta D)[(K_{22}D) - (K_{23}D)]}{(\omega \epsilon_{2}D)(V_{2}''D)(K_{23}D)^{2}} \right] \left[\frac{(c^{2})^{4} \cdot c^{h}}{D^{4}} \right]$$

$$\frac{(B^{e})^{\dagger} \cdot C^{e}}{D^{4}} = -\frac{B^{e} \cdot (C^{e})^{\dagger}}{D^{4}}$$

$$\frac{B^{h}(c^{e})^{\star}}{D^{4}} = \left[\frac{(mD)(\beta D)\left[(k_{2}D)^{2}-(k_{3}D)^{2}\right]}{(w,wD)(k_{2}''D)(k_{3}D)^{2}}\right]\left[\frac{c^{e}(c^{e})^{\star}}{D^{4}}\right]$$
+
$$\left[\frac{(Y_{3}'D)(K_{c2}D)^{2}tan[(Y_{3}'D)(h_{c3})]}{(Y_{c3}'D)(K_{c3}D)^{2}}\right] \left[\frac{c^{e}(h_{c3})^{2}}{\int D^{4}}\right]$$

$$\frac{(B^{h})^{\star} \cdot c^{e}}{D^{4}} = \frac{B^{h} \cdot (c^{e})^{\star}}{D^{4}}$$

$$\frac{B^{h} (C^{h})^{*}}{D^{4}} = j \left[\frac{(d_{n}D)(\beta D)((K_{c2}D)^{2} - (K_{c3}D)^{2})}{(WMD)(Y_{2}^{"}D)(K_{c3}D)^{2}} \right] \left[\frac{C^{e} (C^{h})^{*}}{j D^{4}} \right]$$

+
$$\int \left[\frac{(\gamma_{3}^{\prime}D)(k_{c2}D)^{2} tam[(\gamma_{3}^{\prime}D)(h_{0}^{\prime}D)]}{(\gamma_{2}^{\prime}D)(k_{c3}D)^{2}} \right] \left[\frac{c^{h}}{D^{4}} \right]$$

$$\frac{(B^{h})^{\star} \cdot c^{h}}{D^{4}} = - \frac{B^{h} \cdot (c^{h})^{\star}}{D^{4}}$$

$$\frac{D^{e.}(D^{e})^{*}}{D^{4}} = \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}}\right]^{2} \left[\frac{1+\tan^{2}[(Y_{3}^{*}D)(h_{c}^{*}D)]}{\tan^{2}[(Y_{3}^{*}D)(h_{c}^{*}D)]}\right] \left[\frac{c^{e.}(c^{e})^{*}}{D^{4}}\right]$$

$$\frac{D^{h} (D^{h})^{*}}{D^{4}} = \left[\frac{(K_{C2}D)^{2}}{(K_{C3}D)^{2}}\right]^{2} \left[1 + \tan^{2}\left[(N_{3}^{*}D)(h_{7}^{*}D)\right] \left[\frac{ch (ch)^{*}}{D^{4}}\right]$$

$$\frac{D^{e.}(D^{h})^{*}}{D^{4}} = \left[\frac{(k_{c2}D)^{2}}{(k_{c3}D)^{2}}\right]^{2} \frac{1 + \tan^{2}\left[(Y_{3}^{*}D)(h_{7}^{*}D)\right]}{\tan\left[(Y_{3}^{*}D)(h_{7}^{*}D)\right]} \left[\frac{C^{e.}(C^{h})^{*}}{jD^{4}}\right]$$

$$\frac{(D^{e})^{*}}{D^{4}} = \frac{D^{e}}{D^{4}} (D^{h})^{*}$$

If
$$(\gamma_2 D)^2 < 0$$
 and $(\gamma_3 D^2 > 0)$

$$\frac{B^{\ell} \cdot (B^{\ell})^{*}}{D^{4}} = \left[\frac{(W_{23}D)(Y_{3}D)(K_{23}D)^{2}}{(W_{23}D)(Y_{2}^{*}D)(K_{23}D)^{2}tamh[(Y_{3}D)(H_{2}^{*}D)]}\right]^{2}\left[\frac{c^{\ell} \cdot (c^{\ell})^{*}}{D^{4}}\right]$$
$$- 2\left[\frac{(W_{23}D)(Y_{2}^{*}D)(K_{23}D)(K_{23}D)^{2}}{(W_{23}D)(Y_{2}^{*}D)(K_{23}D)^{2}tamh[(Y_{3}D)(H_{2}^{*}D)]}\right] \cdot \left[\frac{(c^{\ell} \cdot (c^{\ell})^{*}}{(W_{23}D)(Y_{2}^{*}D)(K_{23}D)^{2}}\right] \left[\frac{c^{\ell} \cdot (c^{\ell})^{*}}{D^{4}}\right]$$
$$+ \left[\frac{(d_{m}D)(\beta D)[(K_{23}D)^{2} - (K_{23}D)^{2}]}{(W_{23}D)(Y_{2}^{*}D)(K_{23}D)^{2}}\right]^{2}\left[\frac{c^{h} \cdot (c^{h})^{*}}{D^{4}}\right]$$
$$\frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} = \left[\frac{(d_{m}D)(\beta D)[(K_{23}D)^{2} - (K_{23}D)^{2}]}{(W_{M}D)(Y_{2}^{*}D)(K_{23}D)^{2}}\right]^{2}\left[\frac{c^{\ell} \cdot (c^{\ell})^{*}}{D^{4}}\right]$$
$$+ \left[\frac{2(d_{m}D)(\beta D)[(K_{22}D)^{2} - (K_{23}D)^{2}]}{(W_{M}D)(Y_{2}^{*}D)(K_{23}D)^{2}}\right] \cdot \frac{C^{\ell} \cdot (c^{\ell})^{*}}{D^{4}}\right]$$

$$\left[\frac{(\gamma_3 D)(k_2 D) \tan h[(\gamma_3 D)(h_2)]}{(\gamma_1^{\prime} D)(k_3 D)^2} \right] \left[\frac{(c^{e})^{*} \cdot c^{h}}{j D^{4}} \right]$$

+
$$\left[\frac{(N_3D)(k_{c2}D)^2 \tanh[(N_3D)(h_{2}^{+}D)]}{(N_2^{+}D)(k_{c3}D)^2}\right]^2 \left[\frac{Ch.(Ch)^{+}}{D^{+}}\right]$$

$$\frac{B^{e} (B^{h})^{*}}{D^{4}} = -j \left[\frac{(W \in 3D)(Y_{3}D)(K_{c2}D)^{2}}{(W \in 2D)(Y_{2}^{*}D)(K_{c3}D)^{2} \tanh\left[(Y_{3}D)(h_{7}b)\right]} \right].$$

$$\begin{bmatrix} (dnD)(BD)[(K_{c2}D)^2 - (K_{c3}D)^2] \\ (WAD)(Y_{2}^{"}D)(K_{c3}D)^2 \end{bmatrix} \begin{bmatrix} C^{e} \cdot (C^{e})^{*} \\ D^{4} \end{bmatrix}$$

$$+ \int \left[\frac{(W_{23}D)(Y_{3}D)(K_{22}D)^{2}}{(W_{22}D)(Y_{2}D)(K_{23}D)^{2}}\right] \left[\frac{(Y_{3}D)(K_{22}D)^{2}}{(Y_{2}^{\prime\prime}D)(K_{3}D)^{2}}\right] \left[\frac{C^{2} \cdot (c^{h})^{4}}{\int D^{4}}\right]$$

+
$$\int \left[\frac{(d_n D)^{\dagger} (BD)^{\dagger} [(K_2D)^{\dagger} - (K_3D)^{\dagger}]}{(W \mathcal{E}_2 D) (W \mathcal{U} D) (Y_2'' D) (K_3 D)^{\dagger}} \right] \left[\frac{c^{\bullet} (c^{h})^{\star}}{\int D^{4}} \right]$$

$$-j\left[\frac{(d_{m}D)(\beta D)\left[(K_{2}D)^{2}-(K_{3}D)^{2}\right]}{(\omega \epsilon_{2}D)(V_{1}^{"}D)(K_{2}D)^{2}}\right]$$

$$\left[\frac{(Y_3D)(K_{c2}D)^2 \tanh\left[(Y_3D)(h_{c3}b)\right]}{(Y_2^{"}D)(K_{c3}D)^2}\right] \left[\frac{ch \cdot (ch)^4}{D^4}\right]$$

$$\frac{(\mathbf{g}^{e})^{*} \cdot \mathbf{g}^{h}}{\mathbf{D}^{+}} = - \frac{\mathbf{g}^{e} \cdot (\mathbf{g}^{h})^{*}}{\mathbf{D}^{+}}$$

$$\frac{B^{e} \cdot (c^{h})^{*}}{D^{4}} = \left[\frac{(W \in B_{3}D)(Y_{3}D)(K \in D)^{2}}{(W \in D)(Y_{2}D)(K \in D)^{2} \tanh[(Y_{3}D)(h^{2}/D)]}\right] \left[\frac{C^{e} \cdot (c^{h})^{*}}{j D^{4}}\right]$$

$$- \left[\frac{(d_n D)(\beta D) \left[(K_{c3}D)^{\dagger} - (K_{c3}D)^{\dagger} \right]}{(\hat{W} \mathcal{E}_2 D)(Y_2^{\prime \prime} D)(K_{c3}D)^{2}} \left[\frac{ch.(ch)^{\star}}{D^{4}} \right] \right]$$

$$\frac{(B^{e})^{\star} \cdot c^{h}}{D^{4}} = \frac{B^{e} \cdot (c^{h})^{\star}}{D^{4}}$$

$$\frac{B^{e} \cdot (c^{e})^{*}}{D^{4}} = -j \left[\frac{(\omega \epsilon_{3} D)(\gamma_{3} D)(k_{c_{2}} D)^{2}}{(\omega \epsilon_{2} D)(\gamma_{2}^{"}D)(k_{c_{3}} D)^{2} tanh[(\gamma_{3} D)(\frac{k_{2}}{D})]} \right] \left[\frac{c^{e} \cdot (c^{e})^{*}}{D^{4}} \right]$$

$$-j\left[\frac{(d_{n}D)(\beta D)\left[(K_{c2}D)^{2}-(K_{c3}D)^{2}\right]}{(W \epsilon_{2}D)(Y_{2}^{*}D)(K_{c3}D)^{2}}\right]\left[\frac{(c^{e})^{*} \cdot c^{h}}{j D^{4}}\right]$$

$$\frac{(B^{e})^{*} \cdot C^{e}}{D^{4}} = - \frac{B^{e} \cdot (c^{e})^{*}}{D^{4}}$$

$$\frac{B^{h} \cdot (c^{e})^{*}}{D^{4}} = \left[\frac{(d_{m}D)(BD)\left[(K_{e2}D)^{2} - (K_{e3}D)^{2}\right]}{(W_{\mu}D)(Y_{e}^{"}D)(K_{e3}D)^{2}}\right]\left[\frac{c^{e} \cdot (c^{e})^{*}}{D^{4}}\right]$$

+
$$\left[\frac{(1_{3}D)(K_{c2}D)^{2} \tanh[(1_{3}D)(h^{2}/b)]}{(1_{2}^{2}D)(K_{c3}D)^{2}}\right] \left[\frac{(c^{e})^{*} \cdot c^{h}}{j D^{4}}\right]$$

$$\frac{(B^{h})^{*} c^{e}}{D^{4}} = \frac{B^{h} (c^{e})^{*}}{D^{4}}$$

$$\frac{B^{h} \cdot (C^{h})^{*}}{D^{4}} = j \left[\frac{(C_{h} D)(BD)[(K_{2}D)^{2} - (K_{3}D)^{2}]}{(W UD)(W^{2}D)(K_{3}D)^{2}} \right] \left[\frac{C^{e} \cdot (C^{h})^{*}}{j D^{4}} \right]$$

$$- \int \left[\frac{(N_{3}D)(k_{c2}D) \tanh[(N_{3}D)(h_{2}b)]}{(Y_{2}b)(k_{c3}D)^{2}} \right] \left[\frac{ch.(ch)^{4}}{D^{4}} \right]$$

$$\frac{(B^{h})^{\star} \cdot C^{h}}{D^{4}} = \frac{-B^{h} \cdot (C^{h})^{\star}}{D^{4}}$$

$$\frac{D^{e} \cdot (D^{e})^{*}}{D^{4}} = \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}}\right]^{2} \left[\frac{1 - \tanh^{2} \left[(V_{3}D)(h_{0}^{h})\right]}{\tanh^{2} \left[(V_{3}D)(h_{0}^{h})\right]}\right] \left[\frac{C^{e} \cdot (C^{e})^{*}}{D^{4}}\right]$$

$$\frac{D^{h} \cdot (D^{h})^{t}}{D^{4}} = \left[\frac{(k_{c2}D)^{2}}{(k_{c3}D)^{2}}\right]^{2} \left[1 - \tanh^{2}\left[(\lambda_{3}D)(h_{7}O)\right] \left[\frac{C^{h} \cdot (C^{h})^{t}}{D^{4}}\right]$$

$$\frac{D^{e} (D^{h})^{*}}{D^{4}} = j \left[\frac{(k_{2}D)^{2}}{(k_{3}D)^{2}} \right]^{2} \left[\frac{1 - \tanh^{2} \left[(N_{3}D)(h_{7}b) \right]}{\tanh[(N_{3}D)(h_{7}b)]} \right] \left[\frac{C^{e} (C^{h})^{*}}{JD^{4}} \right]$$

$$\frac{(D^{e})^{*} D^{h}}{D^{4}} = - \frac{D^{e} (D^{h})^{*}}{D^{4}}$$

If
$$(\gamma_{2}D)^{2} > 0$$
 and $(\gamma_{3}D)^{2} < 0$

$$\frac{B^{e} (B^{e})^{*}}{D^{4}} = \left[\underbrace{(\lambda \varepsilon_{3} D)(Y_{3}^{*}D)(K_{c2}D)^{2}}_{(\lambda \varepsilon_{2} D)(Y_{2}^{*}D)(K_{c3}D)^{2} tann[(Y_{3}^{*}D)(K_{c3}D)^{2}}_{(Y_{3}^{*}D)(K_{c3}D)^{2} tann[(Y_{3}^{*}D)(K_{c3}D)^{2}}_{(Y_{3}^{*}D)(K_{c3}D)^{2} tann[(Y_{3}^{*}D)(K_{c3}D)^{2}}_{(Y_{3}^{*}D)(K_{c3}D)^{2} tann[(Y_{3}^{*}D)(K_{c3}D)^{2}}_{(Y_{3}^{*}D)(K_{c3}D)^{2}}_{(\lambda \varepsilon_{2}D)(K_{c3}D)^{2}}_{(\lambda \varepsilon_{2}D)(K_{c3}D)}_{(\lambda \varepsilon_{2}D)}_{(\lambda \varepsilon_{$$

$$\frac{(Y_{3}^{*}D)(k_{c2}D)^{2}}{(Y_{2}D)(k_{c3}D)^{2}}\left[\frac{(Y_{3}^{*}D)(h_{0}^{*}D)}{D^{4}}\right]}{(Y_{2}D)(k_{c3}D)^{2}}$$

+
$$\left[\frac{(N_3^{*}D)(K_{c2}D)^{2}}{(\&D)(K_{c3}D)^{2}}\right]^{2}\left[\frac{ch.(ch)^{*}}{D^{4}}\right]$$

$$\frac{B^{e} \cdot (B^{h})^{*}}{D^{4}} = j \left[\frac{-(W \in 3D)(Y_{3}^{u}D)(K_{c2}D)^{2}}{(W \in 2D)(Y_{3}D)(K_{c3}D)^{2} \tan \left[(Y_{3}^{u}D)(\frac{h_{y}}{D})\right]} \right].$$

$$\frac{[(d_n D)(\beta D)[(K_{c2}D)^2 - (K_{c3}D)^2]}{(W \mu D)(Y_2 D)(K_{c3}D)^2} \left[\frac{C^e \cdot (C^e)^*}{D^4}\right]$$

+
$$\int \left[\frac{(W \mathcal{E}_{3} \mathcal{D})(Y_{3}^{*} \mathcal{D})^{2}(K_{c2} \mathcal{D})^{4}}{(W \mathcal{E}_{2} \mathcal{D})(Y_{2} \mathcal{D})^{2}(K_{c3} \mathcal{D})^{4}} \right] \left[\frac{(\mathcal{C})^{*} \cdot c^{h}}{\int \mathcal{D}^{4}} \right]$$

$$-j\left[\frac{(k_{12}D)^{2}(\beta D)^{2}\left[(k_{22}D)^{2}-(k_{23}D)^{2}\right]^{2}}{(\omega \varepsilon_{2}D)(\omega \mu D)(\lambda D)^{2}(k_{23}D)^{4}}\right]\left[\frac{(c^{e})^{*}.c^{h}}{D^{4}}\right]$$

+)
$$\left[\frac{(d_m D)(\beta D)[(k_{2}D)^2 - (k_{2}D)^2]}{(W \epsilon_2 D)(Y_2 D)(K_{2}D)^2}\right]$$

$$\frac{(Y_{3}'D)(K_{c2}D)^{2} \tan[(Y_{3}'D)(h_{0})]}{(Y_{c2}D)(K_{c3}D)^{2}} \frac{(h.(h_{0})^{2})}{D^{4}}$$

$$\frac{(B^{e})^{\star} \cdot B^{h}}{D4} = - \frac{B^{e} \cdot (B^{h})^{\star}}{D4}$$

$$\frac{B^{e} (c^{h})^{*}}{D^{4}} = j \left[\frac{(\omega \varepsilon_{3} D)(\gamma_{3}^{\prime} D)(K_{c_{2}} D)^{2}}{(\omega \varepsilon_{2} D)(\gamma_{2} D)(K_{c_{3}} D)^{2} \tan[(\gamma_{3}^{\prime} D)(h_{2} D)]} \right] \left[\frac{C^{e} (c^{h})^{*}}{D^{4}} \right]$$

$$-j\left[\frac{(\mathcal{A}_{n} D)(\beta D)[(\mathcal{K}_{c2} D) - (\mathcal{K}_{c3} D)^{\frac{1}{2}}]}{(\omega \varepsilon_{2} D)(\mathcal{K}_{2} D)(\mathcal{K}_{c3} D)^{\frac{1}{2}}}\right]\left[\frac{ch}{D^{4}}\right]$$

$$\frac{(B^{e})^{*} \cdot c^{h}}{D^{4}} = - \frac{B^{e} \cdot (c^{h})^{*}}{D^{4}}$$

$$\frac{B^{e.}(c^{e})^{\star}}{D^{4}} = \left[\frac{(\omega \mathcal{E}_{3} D)(Y_{3}^{*}D)(K_{c2}D)^{2}}{(\omega \mathcal{E}_{2} D)(Y_{2}D)(K_{c3}D)^{2}} \tan\left[(Y_{3}^{*}D)(Y_{2$$

+
$$\left[\frac{(d_n D)(\beta D)\left[(K_{c_2}D)^2 - (K_{c_3}D)^3\right]}{(\omega \varepsilon_2 D)(Y_2 D)(K_{c_3}D)^2}\right]\left[\frac{(c^e)^{*} \cdot c^h}{j D^4}\right]$$

$$\frac{(B^{e})^{*} \cdot C^{e}}{D^{4}} = \frac{B^{e} \cdot (C^{e})^{*}}{D^{4}}$$

$$\frac{B^{h} \cdot (C^{e})^{k}}{D^{4}} = j \left[\frac{(k_{n}D)(BD) \left[(k_{c2}D)^{2} - (k_{c3}D)^{2} \right]}{(W \mu D) (K_{D}) (K_{c3}D)^{k}} \right] \left[\frac{C^{e} \cdot (C^{e})^{k}}{D^{4}} \right]$$

+
$$\int \left[\frac{(Y_{3}^{*}D)(K_{c3}D)^{2} \tan[(Y_{3}^{*}D)(C_{c3}^{*}D)]}{(Y_{2}D)(K_{c3}D)^{2}} \right] \left[\frac{c^{e}(C_{c3}^{*})^{2}}{D^{4}} \right]$$

$$\frac{(B^{h})^{\star} \cdot c^{e}}{D^{4}} = \frac{-B^{h} \cdot (c^{e})^{\star}}{D^{4}}$$

$$\frac{B^{h} (c^{h})^{*}}{D^{4}} = \left[\frac{(d_{m}D)(BD)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(W,WD)(Y_{c2}D)(K_{c3}D)^{2}}\right] \left[\frac{(c^{e})^{*} c^{h}}{JD^{4}}\right]$$

$$- \left[\frac{(Y_{3}^{"}D)(K_{c2}D)^{2} \tan[(Y_{3}^{"}D)(h_{c})]}{(Y_{2}D)(K_{c3}D)^{2}} \right] \left[\frac{Ch.(ch)^{*}}{D^{4}} \right]$$

$$\frac{(B^{h})^{\star} \cdot ch}{D^{4}} = \frac{B^{h} \cdot (c^{h})^{\star}}{D^{4}}$$

$$\frac{D^{e} (D^{e})^{\dagger}}{D^{4}} = \frac{[(k_{c2}D)^{2}][1 + \tan^{2}[(N_{3}D)(h_{0})]]}{[(k_{c3}D)^{4}][t_{c}m^{2}[(N_{3}'D)(h_{0})]]} \frac{C^{e}(C^{e})}{D^{4}}$$

$$\frac{D^{h} \cdot (D^{h})^{\star}}{D^{4}} = \left[\frac{(k_{c3}D)^{\star}}{(k_{c3}D)^{\star}}\right] \left[1 + \tan^{2}\left[(\lambda_{3}^{\prime}D)(h_{c}^{\prime}D)\right] \left[\frac{C^{h} \cdot (C^{h})^{\star}}{D^{4}}\right]$$

$$\frac{D^{e} \cdot (D^{h})^{*}}{D^{4}} = \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}}\right] \left[\frac{1 + \tan^{2}\left[(N_{3}^{''}D)(h_{2}^{''}b)\right]}{\tan\left[(N_{3}^{''}D)(h_{2}^{''}b)\right]} \left[\frac{e \cdot (ch)^{*}}{j D^{4}}\right]$$

$$\frac{(D^e)^{\star} \cdot D^h}{D^4} = \frac{D^e \cdot (D^h)^{\star}}{D^4}$$

If
$$(\gamma_2 D)^2 > 0$$
 and $(\gamma_3 D)^2 > 0$

$$\frac{B^{e} \cdot (B^{e})^{*}}{D^{4}} = \left[\frac{(\omega E_{3} D)(Y_{3} D)(K_{c2}D)^{2}}{(\omega E_{2}D)(Y_{2}D)(K_{3}D)^{2} \tan h[(\Omega SD)(Y_{3}D)]} \right]^{2} \left[\frac{(e^{e} \cdot (e^{e})^{*}}{D^{4}} \right] \\ + 2 \left[\frac{(\omega E_{3}D)(Y_{2}D)(K_{3}D)^{2}}{(\omega E_{2}D)(Y_{2}D)(K_{3}D)^{2} \tan h[(Y_{3}D)(h_{7}(b)]} \right] \cdot \right] \\ \left[\frac{(d_{n}D)(\beta D)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(\omega E_{2}D)(Y_{2}D)(K_{c3}D)^{2}} \right] \left[\frac{(e^{e})^{*} c^{h}}{j D^{4}} \right] \\ + \left[\frac{(d_{n}D)(\beta D)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(\omega E_{2}D)(Y_{2}D)(K_{c3}D)^{2}} \right] \left[\frac{c^{h} \cdot (c^{h})^{*}}{D^{4}} \right] \\ \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} = \left[\frac{(d_{n}D)(\beta D)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(\omega AD)(Y_{2}D)(K_{c3}D)^{2}} \right]^{2} \left[\frac{c^{e} \cdot (c^{e})^{*}}{D^{4}} \right] \\ + 2 \left[\frac{(d_{n}D)(\beta D)[(K_{c2}D)^{2} - (K_{c3}D)^{2}]}{(\omega AD)(Y_{2}D)(K_{c3}D)^{2}} \right] \cdot \right]$$

$$\frac{\left[\binom{1}{3}D\right)\left(k_{c2}D\right)^{2} \tanh\left[\binom{1}{3}D\right)\binom{h}{b}}{\binom{1}{2}} \left[\frac{(c^{e})^{*} \cdot c^{h}}{D^{4}}\right]$$

+
$$\left[\frac{(Y_{3}D)(K_{c2}D)^{2} tanh[(Y_{3}D)(h_{0})]}{(Y_{2}D)(K_{c3}D)^{2}}\right]^{2} \left[\frac{ch.(ch)^{*}}{D^{4}}\right]$$

$$\frac{B^{e} \cdot (B^{h})^{t}}{D^{4}} = -j \left[\frac{(\omega \epsilon_{3} D)(Y_{3} D)^{2} (K_{c_{2}} D)^{2}}{(\omega \epsilon_{3} D)(Y_{3} D)(K_{c_{3}} D)^{2} \tanh[(Y_{3} D)(h_{7}^{h} D)]} \right]$$

$$\begin{bmatrix} (d_m D)(\beta D) [(k_2 D)^2 - (k_3 D)^2] \\ (W, U D) (Y_2 D) (k_3 D)^2 \end{bmatrix} \begin{bmatrix} c^e \cdot (c^e)^* \\ D^4 \end{bmatrix}$$

+
$$j \left[\frac{(\omega \epsilon_{3} D) (\gamma_{3} D)^{\dagger} (\kappa_{2} D)^{4}}{(\omega \epsilon_{2} D) (\gamma_{2} D) (\kappa_{3} D)^{4}} \right] \left[\frac{c^{e} (c^{h})^{*}}{j D^{4}} \right]$$

+
$$j \left[\frac{(d_n D)^2 (pD)^2 [(k_2 D)^2 - (k_3 D)^2]^2}{(W \epsilon_2 D) (W \mu D) (Y_2 D)^2 (k_3 D)^4} \right] \left[\frac{c^e \cdot (c^h)^*}{j D^4} \right]$$

$$-j\left[\frac{(d_{m}D)(\beta D)[(k_{2}D)^{2}-(k_{3}D)^{2}]}{(\omega \varepsilon_{2}D)(\gamma_{2}D)(k_{3}D)^{2}}\right]$$

$$\frac{(Y_{3}D)(K_{2}D)^{2} \tanh[(Y_{3}D)(h_{2}^{2}D)]}{(Y_{2}D)(K_{2}3D)^{2}} \frac{ch.(ch)^{2}}{D^{4}}$$

$$\frac{(B^{e})^{\star} \cdot B^{h}}{D^{4}} = \frac{-B^{e} \cdot (B^{h})^{\star}}{D^{4}}$$

$$\frac{B^{e.}(c^{h})^{*}}{D^{4}} = j \left[\frac{(\omega \epsilon_{3} D)(Y_{3} D)(K_{c2} D)^{2}}{(\omega \epsilon_{2} D)(Y_{2} D)(K_{c3} D)^{2} \tanh[(Y_{3} D)(h_{7} b)]} \right] \left[\frac{c^{e.}(c^{h})^{*}}{D^{4}} \right]$$

$$-j\left[\frac{(d_{m}D)(\beta D)\left[(K_{22}D)^{2}-(K_{3}D)^{2}\right]}{(W_{22}D)(Y_{2}D)(K_{3}D)^{2}}\right]\left[\frac{C^{h}\cdot(C^{h})^{k}}{D^{4}}\right]$$

$$\frac{(B^{e})^{*} \cdot c^{h}}{D^{4}} = - \frac{B^{e} \cdot (c^{h})^{*}}{D^{4}}$$

$$\frac{B^{e.}(C^{e})^{\star}}{D^{4}} = \left[\frac{(\omega \varepsilon_{3} D)(\gamma_{3} D)(\kappa_{2} D)^{2}}{(\omega \varepsilon_{2} D)(\gamma_{2} D)(\kappa_{3} D)(\gamma_{3} D)(\gamma$$

+
$$\left[\frac{(dnD)(\beta D)[(K_{22}D)^{2}-(K_{32}D)^{2}]}{(W \epsilon_{2}D)(U D)(K_{32}D)^{2}}\right]\left[\frac{(c^{e})^{*} \cdot c^{h}}{JD^{4}}\right]$$

$$\frac{(B^e)^{\star} \cdot C^e}{D^4} = \frac{B^e \cdot (C^e)^{\star}}{D^4}$$

$$\frac{B^{h} \cdot (C^{e})^{*}}{D^{4}} = j \left[\frac{(d_{m}D)(\beta D) \left[(k_{c2}D)^{2} - (k_{c3}D^{2}) \right]}{(W,WD)(Y_{2}D)(k_{c3}D)^{2}} \right] \left[\frac{C^{e} \cdot (C^{e})^{*}}{D^{4}} \right]$$

+
$$j \left[\frac{(Y_{3}D)(k_{c2}D)^{2} tanh[(Y_{3}D)(h_{2}^{*}b)]}{(Y_{2}D)(k_{c3}D)^{2}} \right] \left[\frac{(c^{e})^{*} ch}{j D^{4}} \right]$$

$$\frac{(B^{h})^{\star} \cdot c^{e}}{D^{4}} = -\frac{B^{h} \cdot (c^{e})^{\star}}{D^{4}}$$

$$\frac{B^{h} \cdot (c^{h})^{*}}{D^{4}} = \left[\frac{(\mathcal{A}_{n} D)(\mathcal{B} D) \left[(\mathcal{K}_{0} D)^{2} - (\mathcal{K}_{0} 3 D)^{2} \right]}{(\mathcal{W}_{n} \mathcal{U})(\mathcal{K}_{0} 3 D)^{2}} \right] \left[\frac{(c^{e})^{*} \cdot c^{h}}{\mathcal{J} D^{4}} \right]$$

+
$$\left[\frac{(Y_{3}D)(k_{2}D)^{2} \tanh [(Y_{3}D)(h_{3}b)]}{(Y_{2}D)(k_{3}D)^{2}}\right] \left[\frac{ch.(ch)^{4}}{D^{4}}\right]$$

$$\frac{(B^{h})^{\star} \cdot c^{h}}{D^{4}} = \frac{B^{h} \cdot (c^{h})^{\star}}{D^{4}}$$

$$\frac{D^{e} \cdot (D^{e})^{\dagger}}{D^{4}} = \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}}\right]^{2} \left[\frac{1-\tanh^{2}[(Y_{3}D)(h_{0}^{*})]}{\tanh^{2}[(Y_{3}D)(h_{0}^{*})]}\right] \left[\frac{C^{e} \cdot (C^{e})^{\dagger}}{D^{4}}\right]$$

$$\frac{D^{h} \cdot (D^{h})^{*}}{D^{4}} = \left[\frac{(K_{c2}D)^{2}}{(K_{c3}D)^{2}}\right]^{2} \left[1 - \tanh^{2}\left[(Y_{3}D)(h_{7}^{2}(D))\right] \left[\frac{Ch}{D^{4}}\right]$$

$$\frac{D^{e} \cdot (D^{h})^{*}}{D^{4}} = j \left[\frac{(k_{2}D)^{2}}{(k_{3}D)^{2}} \right]^{2} \left[\frac{1 - \tanh^{2} \left[(\gamma_{3}D) (h^{*} \delta) \right]}{\tanh((\gamma_{3}D) (h^{*} \delta)]} \right] \left[\frac{c^{e} \cdot (c^{h})^{*}}{j D^{4}} \right]$$

$$\frac{(D^e)^{*} D^h}{D^4} = - \frac{D^e (D^h)^{*}}{D^4}$$

REGION 1

The term $P_{1 \Delta}$ will be used for the power flow in region 1 for the case $(\gamma_1 \; \text{D})^{2-} > 0.$

$$P_{ia} = -\frac{1}{8} \left(\frac{D}{b} \right) \operatorname{Re} \sum_{n=-\infty}^{\infty} \left\{ \left[(\beta D) (W \mathcal{E}_{i} D) (d_{n} D)^{2} \frac{A^{e} (A^{e})^{*}}{D^{4}} + (\beta D) (W \mathcal{H}_{i} D) \right] \right\}$$

$$(Y_{i}D)^{2} \frac{A^{h} \cdot (A^{h})^{*}}{D^{4}} - j (\beta D)^{2} (d_{m} D) (Y_{i}D) \frac{A^{e} \cdot (A^{h})^{*}}{D^{4}} + (K_{i}D)^{2} (d_{m} D) (Y_{i}D)$$

$$\frac{(A^{e})^{\star} \cdot A^{h}}{D^{4}} \Big[\frac{2(Y,D) \tanh[(Y,D)(hY_{D})]}{(Y,D)^{2}[1-\tanh^{2}[(Y,D)(hY_{D})]]} - 2\left(\frac{h_{1}}{D}\right) \Big] + \Big[(\beta D)$$

$$(W,U,D)(dnD)^2 \xrightarrow{A^h.(A^h)^*} + (\beta D)(W E_1 D)(Y_1 D)^2 \xrightarrow{A^e.(A^e)^*} D^4$$

$$j(\beta D)^{2}(\alpha n D)(Y_{1}D) \frac{A^{e}(A^{h})^{*}}{D4} + j(K_{1}D)^{2}(\alpha n D)(Y_{1}D) \frac{A^{h}(A^{e})^{*}}{D4}$$

$$\left[\frac{2(Y_{10}) \tanh[(Y_{10})(h_{16})]}{(Y_{10})^{2}[1-\tanh^{2}[(Y_{10})(h_{16})]]} + 2\left(\frac{h_{1}}{D}\right)\right]$$

For the case $(\gamma_1 D)^2 < 0$, γ_1 is imaginary in which case $(\gamma_1''D)^2 = -(\gamma_1 D)^2$. The power flow, P_{1b} , for this case is

REGION 2

For region 2, the power flow expressions are the same as for unshielded slotline except that the Fourier integral is replaced by a summation and the interval 2 is replaced by the interval b.

For the case $(\gamma_2 D)^2 > 0$, γ_2 is real and

$$\begin{split} \beta_{2q} &= -\frac{1}{8} \left(\frac{D}{b} \right) R_{e} \sum_{n=-\infty}^{W} \left\{ \left[(\beta D) (\omega \mathcal{E}_{2} D) (d_{n} D) \frac{B^{e} \cdot (B^{e})^{*}}{D^{4}} + (\beta D) (\omega \mathcal{H}_{2} D) \right] \\ (d_{m} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} + (\beta D) (\omega \mathcal{E}_{2} D) (Y_{2} D)^{2} \frac{ce}{D^{4}} + (\beta D) (\omega \mathcal{H}_{2} D) \\ (Y_{2} D)^{2} \frac{ch}{D^{4}} \frac{(ch)^{*}}{D^{4}} + j (\beta D) (d_{n} D) (Y_{2} D) \left[\frac{B^{e} \cdot (ch)^{*}}{D^{4}} + \frac{(bh)^{*} \cdot c^{e}}{D^{4}} \right] - \\ j (K_{2} D)^{2} \frac{ch}{(d_{m} D)} (Y_{2} D) \left[\frac{(B^{e})^{*} \cdot ch}{D^{4}} + \frac{B^{h} \cdot (ce)^{*}}{D^{4}} \right] \left[\frac{2(Y_{2} D) tomh(Y_{2} D)}{(Y_{2} D) [1 - tamh^{*}(Y_{2} D)]} \right] \\ - 2 \right] + \left[(\beta D) (\omega \mathcal{E}_{2} D) (d_{n} D)^{2} \frac{c^{e} \cdot (ce)^{*}}{D^{4}} + (\beta D) (\omega \mathcal{H}_{2} D) (d_{n} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} - j \right] (K_{2} D)^{2} (d_{n} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} + \frac{B^{e} \cdot (ch)^{*}}{D^{4}} - j \right] (K_{2} D)^{2} (d_{n} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} + \frac{B^{e} \cdot (ch)^{*}}{D^{4}} + \frac{(\beta D) (\omega \mathcal{H}_{2} D) (d_{n} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} + \frac{B^{e} \cdot (ch)^{*}}{D^{4}} + \frac{(\beta D) (\omega \mathcal{H}_{2} D) (M_{n} D)^{2} \frac{B^{h} \cdot (B^{h})^{*}}{D^{4}} + \frac{B^{e} \cdot (ch)^{*}}{D^{4}} - j \right] \left[\frac{(B^{h})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{h}}{D^{4}} \right] + \\ \left[(\beta D) (\omega \mathcal{E}_{2} D) \left[(d_{n} D)^{2} + (Y_{2} D)^{2} \right] \left[\frac{B^{e} \cdot (ce)^{*}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{B^{e} \cdot (ch)^{*}}{D^{4}} \right] + 2 \right] \right] \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] + \\ \left[(\beta D) (\omega \mathcal{E}_{2} D) \left[(d_{n} D)^{2} + (Y_{2} D)^{2} \right] \left[\frac{B^{e} \cdot (ce)^{*}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \right] \right] \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \right] \left[\frac{B^{e} \cdot (ce)^{*}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] \left[\frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} + \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}}$$

$$(\beta D)(W H_2 D) \left[(d_n D)^2 + (Y_2 D)^2 \right] \left[\frac{B^{h} (c^h)^*}{D^4} + \frac{(B^{h})^* c^h}{D^4} \right]$$

+
$$j 2 (\beta D)^{2} (d_{m} D) (Y_{2}D) \left[\frac{B^{e} (B^{h})^{*}}{D^{4}} + \frac{C^{e} (C^{h})^{*}}{D^{4}} \right] - j 2 (K_{2}D)^{2}$$

$$(x_n D)(Y_2 D) \left[\frac{(ce)^{\cancel{p}} \cdot ch}{D^4} + \frac{(Be^{\cancel{p}} \cdot B^h)}{D^4} \right] \left[\frac{2 \tan h^2(Y_2 D)}{(Y_2 D) \left[1 - \tanh^2(Y_2 D) \right]} \right].$$

For the case $(\gamma_2 D)^2 < 0$, γ_2 is imaginary in which case $(\gamma_2''D)^2 = -(\gamma_2 D)^2$. The power flow, P_{2b} , for this case is

$$P_{2b} = -\frac{1}{8} \left(\frac{D}{b}\right) \operatorname{Re} \sum_{m=-\infty}^{\infty} \left\{ \left[\frac{(\beta D)(\omega E_2 D)(\omega m D)^2}{(\gamma_2^{''} D)} \frac{B^{e_{\cdot}}(B^{e})^{*}}{D^4} + \frac{(\beta D)}{(\gamma_2^{''} D)} \right] \right\}$$

$$\frac{(\alpha D)^2 B^{h} (B^{h})^{\star}}{D^4} + (\beta D)(W \mathcal{E}_2 D)(\Sigma D) \frac{c^e (C^e)^{\star}}{D^4} + (\beta D)(W \mathcal{M}_2 D)$$

$$(\chi''_D) \frac{ch \cdot (ch)^{*}}{D^4} + (\beta D)^2 (\chi_n D) \left[\frac{B^e \cdot (ch)^{*}}{D^4} - \frac{(B^h)^{*} \cdot c^e}{D^4} \right] +$$

$$(K_{2}D)^{2}(dmD)\left[\frac{(B^{e})^{*} \cdot ch}{D^{4}} - \frac{B^{h} \cdot (c^{e})^{*}}{D^{4}}\right]\left[2 \frac{y_{2}^{\prime\prime}D}{D^{4}} - Sim(2 \frac{y_{2}^{\prime\prime}D}{D^{4}})\right] +$$

$$\begin{bmatrix} \frac{(\Phi D)(\mu K_{2}D)(A n D)^{2}}{(Y_{2}^{\prime\prime}D)} \cdot \frac{c^{e}}{D^{4}} + \frac{(\mu D)(\mu M_{2}D)(A n D)^{2}}{(Y_{2}^{\prime\prime}D)} \cdot \frac{c^{h}}{D^{4}} + \\ (\beta D)(\mu K_{2}D)(Y_{2}^{\prime\prime}D) \frac{B^{e}}{D^{4}} + (\beta D)(\mu M_{2}D)(Y_{2}^{\prime\prime}D) \frac{B^{h}}{D^{4}} + \\ (\beta D)^{2}(A n D) \left[\frac{(B^{h})^{*} \cdot c^{e}}{D^{4}} - \frac{B^{e}(c^{h})^{*}}{D^{4}} \right] + (K_{2}D)^{2}(A n D) \left[\frac{B^{h}}{D^{4}} \cdot \frac{(c^{e})^{*}}{D^{4}} - \frac{(B^{e})^{*} \cdot c^{h}}{D^{4}} \right] \\ \left[2(Y_{2}^{\prime\prime}D) + s_{1}m(2Y_{2}^{\prime\prime}D) \right] + j \left[(\beta D)(\mu K_{2}D) \left[\frac{(A n D)^{2} - (Y_{2}^{\prime\prime}D)^{2}}{(Y_{2}^{\prime\prime}D)} \right] \right] \\ \left[\frac{B^{e}}{D^{4}} - \frac{(B^{e})^{*} \cdot c^{e}}{D^{4}} \right] + (\beta D)(\mu M_{2}D) \left[\frac{(A n D)^{2} - (Y_{2}^{\prime\prime}D)^{2}}{(Y_{2}^{\prime\prime}D)} \right] \\ \left[\frac{B^{h} \cdot (c^{h})^{*}}{D^{4}} - \frac{(B^{h})^{*} \cdot c^{h}}{D^{4}} \right] + 2(\beta D)^{2}(A n D) \left[\frac{B^{e} \cdot (B^{h})^{*}}{D^{4}} - \frac{c^{e} \cdot (c^{h})^{*}}{D^{4}} \right] + \\ 2(K_{2}D)^{2}(A n D) \left[\frac{(c^{e})^{*} \cdot c^{h}}{D^{4}} - \frac{(B^{e})^{*} \cdot B^{h}}{D^{4}} \right] \left[1 - \cos(2Y_{2}^{\prime\prime}D) \right] \right] .$$

For the case $(\gamma_3 D)^2 > 0$, is real and the power flow, P3q, is

$$P_{3a} = -\frac{1}{8} \left(\frac{D}{D} \right) Re \frac{\omega}{m^{n} - \omega} \left\{ \left[\left(\frac{1}{9} D \right) \left(\frac{1}{4} E_{3} D \right) \left(\frac{1}{4} n D \right)^{2} \frac{D^{e} \cdot \left(\frac{D^{e}}{D^{4}} \right)^{*}}{D^{4}} + \left(\frac{1}{9} D \right) \left(\frac{1}{4} n D \right) \right] \right\}$$

$$\left(\frac{Y_{3}}{D^{2}} \frac{D^{h} \cdot \left(\frac{D^{h}}{D^{4}} \right)^{*}}{D^{4}} + \frac{1}{J} \left(\frac{B}{9} D^{2} \left(\frac{1}{4} n D \right) \left(\frac{1}{4} 3 D \right) \frac{D^{e} \cdot \left(\frac{D^{h}}{D^{4}} \right)^{*}}{D^{4}} - \frac{1}{J} \left(\frac{K_{3}}{D} D \right)^{2} \left(\frac{1}{4} n D \right) \right] \right] \right\}$$

$$\left(\frac{Y_{3}}{D^{4}} \frac{D^{e} \cdot \left(\frac{D^{h}}{D^{4}} \right)^{*}}{D^{4}} + \left(\frac{B}{2} D \right) \left(\frac{1}{4} n D \right)^{2} \frac{D^{e} \cdot \left(\frac{D^{e}}{D^{4}} \right)^{*}}{D^{4}} + \left(\frac{B}{2} D \right) \left(\frac{1}{4} n D \right)^{2} \frac{D^{e} \cdot \left(\frac{D^{e}}{D^{4}} \right)^{*}}{D^{4}} + \left(\frac{B}{2} D \right) \left(\frac{1}{4} n D \right) \left(\frac{1}{4} n D \right)^{2} \frac{D^{e} \cdot \left(\frac{D^{e}}{D^{4}} \right)^{*}}{D^{4}} + \frac{1}{J} \left(\frac{B}{B} D^{2} \left(\frac{1}{4} n D \right) \left(\frac{1}{4} n D \right)^{2} \frac{D^{e} \cdot \left(\frac{D^{h}}{D^{4}} \right)^{*}}{D^{4}} - \frac{1}{J} \left(\frac{K_{3}}{D} D^{2} \left(\frac{1}{4} n D \right) \left(\frac{1}{3} D \right) \frac{D^{e} \cdot \left(\frac{D^{e}}{D^{4}} \right)^{*}}{D^{4}} \right) \\ \left(\frac{2 \left(\frac{Y_{3}}{D} \right) \frac{1}{2} \frac{1}{n + 1} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{1}{1 + 1} n h^{2} \left(\frac{Y_{3}}{D} D \right) \left(\frac{1}{n + 1} n h^{2} \left(\frac{1}{1 + 1} n h^{2} \left(\frac{1}{1$$

For the case $(\gamma_3 D)^2 < 0$, γ_3 is imaginary in which case $(\gamma_3''D)^2 = -(\gamma_3 D)^2$. The power flow, P_{3b} , for this case is

$$P_{3b} = -\frac{1}{8} \left(\frac{D}{b}\right) R_{e} \sum_{m=-\infty}^{\infty} \left\{ \left[\frac{(\beta D)(W \mathcal{E}_{2} D)(d_{m} D)^{2}}{(Y_{3}'' D)} \frac{D^{e} \cdot (D^{e})^{*}}{D^{4}} + (\beta D)(W \mu_{3} D) \right] \right\}$$

$$(\gamma_3^{\prime\prime} D) \frac{D^{h} \cdot (D^{h})^{\star}}{D^{4}} + (\beta D)^2 (d_n D) \frac{D^{e} \cdot (D^{h})^{\star}}{D^{4}} + (K_3 D)^2 (d_n D) \frac{(D^{e})^{\star} \cdot D^{h}}{D^{4}} \right]$$

$$\left[2(\frac{1}{3}D)(\frac{h_2}{D}) - sim\left[2(\frac{1}{3}D)(\frac{h_2}{D})\right] + \left[\frac{(\beta D)(\omega \mu_3 D)(dm D)^2}{(\frac{1}{3}D)}\right]$$

$$\frac{D^{h} \cdot (D^{h})^{*}}{D^{4}} + (\beta D) (W E_{3} D) (Y_{3}^{"}D) \frac{D^{e} \cdot (D^{e})^{*}}{D^{4}} - (\beta D)^{2} (d_{m} D) \frac{D^{e} \cdot (D^{h})^{*}}{D^{4}}$$

$$-(K_3D)^2(d_mD)\frac{(D^e)^{\star}\cdot D^h}{D^4}\Big]\Big[2(Y_3'D)(\frac{h_2}{D})+sim\Big[2(Y_3'D)(\frac{h_2}{D})\Big]\Big]\Big\}.$$

<u>APPENDIX</u> <u>C</u> COMPUTER PROGRAM 'FINIMP'

<pre>k************************************</pre>	÷ ************************************	D/LAMBDA EPSR1,2,3 H1/D, H2/D, B/D NORMALIZED FIN POSITION COONSTANTS FOR REGIONS 1,2,3 * W/B NORMALIZED FIN POSITION COORDS AND WG HEIGTH *	HERE W = FIN GAP WIDTH B = HEIGTH OF RECTANGULAR WAVEGUIDE D = DIELECTRIC THICKNESS LAMBDA = FREE SPACE WAVELENGTH	k****VARIABLE DEFINITIONS************************************	BOVU = WAVEGUIDE HEIGTH/FIN GAP WIDTH BOVW = WAVEGUIDE HEIGTH/FIN GAP WIDTH DOVL = D/FREE SPACE WAVELENGTH EPSR1,2,3 = RELATIVE DIELECTRIC CONSTANTS FO REGIONS 1,2,3 RESP. *	HIOVD = FIN POSITION COURDINATE/D H2OVD = FIN POSITION COORDINATE/D LPOVL = GUIDE WAVELENGTH/FREE SPACE WAVELENGTH	WUVB = INVERSE UF BUVW XCONST = CONSTANT ADJUSTING THE LIMIT OF SUMMATION OVER ALFD * IMP = FIN-LINE CHARACTERISTIC IMPEDANCE *	*****VARIABLE DECLARATION************************************	^L COMPLEX C. AEAHC. AECAH, CECHC. CECCH, BHBHC, BEBHC, BECBH, BECHC, BECCH, BHCEC, BHCCE, BECEC, BECCE, BHCHC, BHCCH, DEDHC, DECDH, AEAHCP, AECAHP, CECHCP, CECCHP, <u>BHBHCP</u> , <u>BEBHCP</u> , <u>BECBHP</u> , BECHCP,	I BECCHP, BHCECP, BHCCEP, BECECP, BECCEP, BHCHCP, BHCCHP, DEDHCP, DECHP, PII, PI2, PI, P21, P22, P23, P2, P31, P32, P3, PWR	DIMENSION WOVBI(6) COMMON/C1/EPSR1.EPSR2,EPSR3,H1OVD,H2OVD,BOVD COMMON/C2/C2PISQ,PI	COMMON/C5/XCONST COMMON/C5/XCONST SPECIFY LIMIT OF SUMMATION CONSTANTS FOR THE X FIELDS
*	သိပ	200000	000000	5000	0000	0000	000	သိပ				U


```
BETAD AND ALFD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ALFD=FLOAT(N)*C2PT/BOVD
IF(ALFD=FLOAT(N)*C2PT/BOVD
FF(ALFD.EQ.0) EX=1
EZ=0.0
LCULATE VARIABLES DEPENDENT ON FREQUENCY
WMDD=EPSR1*D0VL/60
WEPS1D=EPSR1*D0VL/60
WEPS2D=EPSR2*D0VL/60
WEPS2D=EPSR2*D0VL*2-BETDSQ
KC1DSG=C2PTSQ*EPSR2*D0VL*2-BETDSQ
KC2DSG=C2PTSQ*EPSR2*D0VL*2-BETDSQ
KC2DSG=C2PTSQ*EPSR2*D0VL*2-BETDSQ
KC2DSG=C2PTSQ*EPS2D
KC1DSG=C2PTSQ*EPS2D
KC1DSG=C2PTSQ*EPS2D
KC1DSG=C2PTSQ*EPS2D
KC2DSG=C2PTSQ*EPS2D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              *C2PI/BOVD
) EX=1
) EX=SiN(.5*ALFD*WOVD)/(.5*ALFD*WOVD)
                                                                                                                            WRITE (SEARCH FAILED TO CONVERGE 0 TO (1)
                                                                                                                                                                                                                                                                                                  TE THE CHARACTERISTIC IMPEDANCE
BETAD = C2PI*DOVL/LPOVL
                                                                                        .3.*EPSLN) GO TO
L1+XR1)
    SEARCH
.GE,100) GO TO 6
                                                                                                                                                                                                                                                                                                                                                                                 PWR = CMPLX(0.0,0.0)
PWR = 0.0
PWR 2 = 0.0
PWR 3 = 0.0
M = 50
M = 50
IF (WOVD.EQ.BOVD) M = 1
If L = 1,
N = L - 1
                                                                                                                                                                                                                                                                                                                                                           WOVB
                                                           = TTER +
                                                                                                                       12 = 5 \times (0)
                                                                                             R-XI
                                 TER
END
ITER
ITER
                                                                                                                                                                                                                                                                     CONTINU
                                                                                                                       <u>L</u>POV
GO T
                                                                                                                                                                               OUTFUT
                                                                                                                                                                                                                                                                                                                              BETAD
BOVW =
    TEST FOR
4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CALI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CALI
                                                                                                                                                                            WRITE
6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CALCL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CALCI
                                                                                                                                                                                                                                                                                                      CALCI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CA
                                                                                                                          S
                                                                                                                                                                                                                                                                       \infty
       C
                                                                                                                                                                                                                                                                                                      C
                                                                                                                                                                                      υ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C
```

CALL TFN (G3DSQ, H2OVD, TFN3) D11=-KC2DSQ*(f:+(WEP\$3D*G3DSQ*KC2DSQ*TFN2)/ (WEPS2D*G2DSQ*KC3DSQ*TFN3)) D12=((ALFD*BETAD)/(WEPS2D*G2DSQ))*((KC2DSQ/KC1DSQ)-1,)*KC2DSQ D21=-ALFD*BETAD)/(WEPS2D*G2DSQ))*((KC2DSQ/KC1DSQ)'/(WEPS3D*KC2DSQ*G3DSQ*TFN2)) D22=(WUD*(1.+((KC2DSQ)KC1DSQ)+((WEPS3D*KC2DSQ*G3DSQ*TFN2))/ D22=(WUD*(1.+((KC2DSQ)KC1DSQ)+((WEPS3D*KC2DSQ*G3DSQ))/ (G2DSQ*WMUD*WEPS2D))*((KC2DSQ/KC3DSQ))*((ALFDSQ*BETDSQ)/ DET=D11*D22-D21*D12 DET=D11*D22-D21*D12 CALL TFNS(G1DSQ,H10VD,TFN21) CALL TFNS(G1DSQ,H10VD,TFN21) CALL TFNS(G1DSQ,H10VD,TFN21) CALL TFNS(G2DSQ),H10VD,TFN21) CALL TFNS(G2DSQ,H10VD,TFN21) CALL TFNS(G2DSQ,H10VD,TFN21) CALL TFNS(G2DSQ,H10VD,TFN23) CALL TFNS(G2DSQ,H10VD,TFN23)	IF(G1DSQ) 21,22,22 1DSQ IS LESS THAN ZERO AEAEC= {(EZ**2)*(1.+TFNSQ1))/((K1DSQ**2)*TFNSQ1))/ AHAHC= {(KC1DSQ*EX-ALFD*BETAD*EZ)**2*(1.+TFNSQ1))/ AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**2*(1.+TFNSQ1))/ AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)/ AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)/ AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)/ AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)/// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**(1.+TFNSQ1)/// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**2)**(1.+TFNSQ1)/// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**2)**(1.+TFNSQ1)//// AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**2)**2)**2)**2)**2)**2)**2)**2)**2)**	OWER IN REGION 1 Pl=((BETAD*WEPS1D*ALFD**2*AEAEC)/G1D)+(BETAD*WMUD*G1D*AHAHC) -(BETAD**2*ALFD*AEAHC)-(K1DSQ*ALFD*AECAH))*(2.*G1D*H10VD- SIN(2.*G1D*H10VD)) +(BETAD**D*MUD*ALFD**2*AHAHC)(G1D)+(BETAD*WEPS1D*G1D*AEAEC) +(BETAD**2*ALFD*AEAHC)+(K1DSQ*ALFD*AECAH))*(2.*G1D*H10VD+ SIN(2:*G1D*H10VD)) G0 T0 23	1DSQ_IS_GREATER_THAN_ZERO AEAEC= { (EZ**2)*(1TFNSQ1) / ((KC1DSQ**2)*TFNSQ1) / AHAHC= { {KC1DSQ*EX-ALFD*BETAD*EZ (WMUD**2)*G1D**2*(KC1DSQ**2)*TFNSQ1) / AEAH = {EZ*(KC1DSQ*EX-ALFD*BETAD*EZ)**TFNSQ1) / AEAHC= CMPLX(0.0,AEAH) AEAHC= CMPLX(0.0,AEAH)
	21 ⁶ 1 1		22 ⁶ 1 1

<pre>bECHC = CALFY C BECHT (0.0) + CMFLCX (BECH2, 0.0) / (WEFP BECCH2 = CHLTY BECHT (0.0) + CMFLCX (BECH2, 0.0) / (WEFP BECCH2 = CHLTY (BHCE1, 0.0) - CMFLX (BHCE2, 0.0) BHCEC = CHCEX (BHCE1, 0.0) - CMFLX (BHCE2, 0.0) BHCEC = CHCEX (BHCE1, 0.0) - CMFLX (BHCE2, 0.0) BHCEC = CHCEX (BHCE1, 0.0) - CMFLX (BHCE2, 0.0) BHCCH2 = CHCEX (0.0, - BECE1) + CMFLX (0.0, BHCH2) / (WEPS BECCE = ALFD*BETAD* (CC2DSQ + CC2DSQ) * CECH1 / (WHUD* BECCE = BECE = CHLTY (0.0, - BECE1) + CMFLX (0.0, 0, BECE2) / (WEUD* BHCH1 = (ALFD*BETAD* (CC2DSQ) + (C3DSKC3DSQ) / (WHUD* BHCH2 = (ALFD*BETAD* (C2DSQ) + (C3DSKC3DSQ) / (WHUD* BHCH2 = (ALFD*BETAD* (C2DSQ) + (C3DSKC3DSQ) / (WHUD* BHCH2 = CHCC = CHCH1) + CMFLX (0.0, 0, BHCH2) / (WHUD* BHCH2 = CHCC = CHCH1) + CMFLX (0.0, 0, BHCH2) / (WHUD* BHCH2 = CHCC + BHCH1) + CMFLX (0.0, 0, BHCH2) / (WHUD* BHCH2 = CHCHC) + (BETAD*WEPS2D*ALFD*S2D*CECC + BETAD*W P2 1 = ((BETAD*WEPS2D) + (BETAD*WEPS2D) + (BECHC + BHCCC + BECHC) + (BECHC + BHCCC + BECHC) + (BECHC + BHCCC + BECHC) + (BECHC + BECHCC + BEC</pre>
--

.

000

DHDHC= {KC2DSQ**2*(1.+TFNSQ3)*CHCHC)/(KC3DSQ**2) DEDH= - {KC2DSQ**2*(1.+TFNSQ3)*CECH*G3D)/(KC3DSQ**2*TFN23) DEDHC=CMPLX(DEDH,0.0) DECDH=DEDHC DECDH=DEDHC	IN REGION 3 1 = (BETAD **2 * WEPS 3D * ALFD **2 * DEDEC/G3D) + (BETAD *WMUD *G 3D * DHDHC) (BETAD **2 * ALFD * DEDHC) + (K 3D SQ * ALFD * DECDH)) * (2 . *G 3D * H20VD - SIN(2 . *G 3D * H20VD)) $2 = (BETAD **2 * ALFD * DEDHC) + (K 3D SQ * ALFD * DECDH)) * (2 . *G 3D * H20VD + SIN(2 . *G 3D * H20VD))3 = (BETAD **2 * ALFD * MUD * ALFD **2 * DHDHC(G 3D) + (BETAD * WEPS 3D * G 3D * H20VD + SIN(2 . *G 3D * H20VD)))3 = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10$	<pre>IS LESS THAN ZERQ AND G3DSQ IS GREATER THAN ZERQ EBEL1=(WEPS3D%G3D**2*KC2DSQ)%*2*GECEC)/((WEPS2D%G2D*KC3DSQ)* EEBE2=(ZFN23)%G3D**2*KC2DSQ)%*2*TFN23 EEBE2=(ZFN23)%G3D**2*KC2DSQ)%*2*TFN23 EEBE3=(ALFD*BETAD*(KC3DSQ)**2)%GECCF)/ EEBE3=(ALFD*BETAD*(KC3DSQ)**2)%GECCF)/ HIBH1=(ALFD*BETAD*(KC3DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/ HIBH2=(ALFD*BETAD*(KC2DSQ)**2) HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/(G2D*KC3DSQ)**2) HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/(G2D*KC3DSQ)**2) HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/(G2D*KC3DSQ)**2) HIBH2=(ALFD*BETAD*(KC2DSQ)**2)%GECCF)/(G2D*KC3DSQ)**2) HIBH2=(ALFD*BETAD*(KC3DSQ)**2)%GECF)/(G2D*KC3DSQ)**2)%GECF)// HIBH2=BH1=(WEPS3D*2*KC3DSQ)**2)%GECF)/(G2D*KC3DSQ)**2)%GECF)// HIBH2=BH1=(WEPS3D*2*KC3DSQ)**2)%GECF)//(G2D*KC3DSQ)**2)%GECF)// HIBH2=BH1=(WEPS3D*2*KC3DSQ)**2,*C2DSQ)**2,*C3DSQ)**2)%GECF)// HIBH2=BEBH2=(ALFD*BETAD*(KC3DSQ)**2,*C2DSQ)**C3DSQ)**2)%GECF)// HIBH2=BEBH2=(ALFD*BETAD*(KC3DSQ)**2,*C2DSQ)**C2DSQ)**C3DSQ)**2)%GECF)// HIEPS2D*G2D**2,*KC3DSQ)**2,*CCDSQ)**C2DSQ)**C2DSQ**TFN23 HIBH2=BEBH2=(ALFD*BETAD*(KC3DSQ)**2,*C2DSQ)**C2DSQ)**C3DSQ)**C3DSQ)**C2DSG)**C2D</pre>
---	---	--

BHCCE=BHCEC BECE1= (WEPS3D*G3D**2*KC2DSO*CECEC)/(WEPS2D*G2D*KC3DSQ*TFN23) BECE2= (ALFD*BETAD*(KC3DSO-KC2DSQ)*CECH)/(WEPS2D*G2D*KC3DSQ) BECEC= CMPLX(0.0, -BECE1)+CMPLX(0.0, BECE2) BECCE= -BECEC BHCH1= (ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECH)/(WUD*G2D*KC3DSQ) BHCH1= (ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECH)/(WUD*G2D*KC3DSQ) BHCH2= (KC2DSQ*TFN23*CHCHC)/(G2D*KC3DSQ) BHCH2= (KC2DSQ*TFN23*CHCH1)+CMPLX(0.0, -BHCH2) BHCCH= -BHCHC	WER IN REGION 2 BHBHC/G2D)+(BETAD*WEPS2D*ALFD**2*BEBEC/G2D)+(BETAD*WMUD*ALFD**2* BHBHC/G2D)+(BETAD*WEPS2D*G2D*G2D*GECEC)+(BETAD*WMUD*G2D* CHCHC)+(BETAD**2*ALFD*(BECHC-BHCCE))+(BETAD*WMUD*G2D* (BECCH-BHCEC)))*(2.*G2D)-SIN(2.*G2D)+(BETAD*WMUD*ALFD* BETAD*WEPS2D*ALFD**2*CECEC/G2D)+(BETAD*WMUD*ALFD* CHCHC/G2D)+(BETAD**2*GECEC/G2D)+(BETAD*WMUD*GLFD* BHBHC)+(BETAD**2*ALFD**2*GECEC/G2D)+(BETAD*WMUD*G2D* BHBHC)+(BETAD**2*ALFD**2*GECEC/G2D)+(BETAD*WMUD*G2D* BHBHC)+(BETAD**2*ALFD**2*GECEC/G2D)+(BETAD*WMUD*G2D* P23={BETAD*WEPS2D*ALFD**2-G2D**2)/G2D*(BECEC-BECHC))+(K2DSQ*ALFD* P23={BETAD*WMUD*(ALFD**2-G2D**2)/G2D*(BHCCE-BECHC))+(K2DSQ*ALFD**2* P23={BETAD*WMUD*(ALFD**2-G2D**2)/G2D*(BHCCC-BHCCH))+(K2DSQ*ALFD)* P23={2.*BETAD*WWUD*(ALFD**2-G2D**2)/G2D*(BHCHC-BHCCH))+ P2=P21+P22+C*P23	DEDEC= (KC2DS0**2* (1TFNS03)*CECEC) / (KC3DS0**2*TFNSQ3) DHDHC = (KC2DS0**2* (1TFNS03)*CHCHC) / (KC3DS0**2) DEDH = (KC2DS0**2*(1TFNSQ3)*CECH*63D) / (KC3DSQ**2) DEDHC=CMPLX(0.0, DEDH) DECDH= -DEDHC DECDH= -DEDHC DEDCF (KC2DS0**2*CECEC) / (KC3DS0**2*TFNSQ3) DECDHP = (KC2DS0**2*CECEC) / (KC3DS0**2*TFNSQ3) DEDHP = (KC2DSQ**2*CECEC) / (KC3DS0**2) DEDHP = (KC2DSQ**2*CECEC) / (KC3DSQ**2) DEDHP = DEDHCP	<pre>DWER IN REGION 3 P3B=BETAD*WEPS3D*ALFD**2 P3B=BETAD*WEPS3D*ALFD**2 P3B=BETAD*WMUD*G3D**2 P3C=BETAD*WMUD*G3D**2 P3D=K3DSQ*ALFD*G3D P3E=BETAD*WMUD*ALFD**2 P3E=DETAD*WMUD*ALFD**2 P3E=2 *TFN23/G3D**2 P3G=2 *TFN23/G3D**2 P3I=(P3A*DEDEC+P3B*DHDHC+C*P3C*DEDHC-C*P3D*DECDH)*(-2.*H20VI</pre>
---	--	--	---

+

,

ပပပ

00 00

<pre>ECH1 = (WEPS 3D*63D**2*KC2DSQ*CECH) / (WEPS 2D*62D*KC3DSQ*TFN23) BECH2 = (ALFD*BETAD*(KC3DSQ-KC2DSQ)*CHCHC) / (WEPS2D*62D*KC3DSQ) BECH2 = (ALFD*BETAD*(0.0, BECH1) + CMPLX (0.0, BECH2) BECCH = -BECHC BECCH = -BECHC BHCE1 = (ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECEC) / (WMUD*62D*KC3DSQ) BHCE2 = (WEPS3D*G3D*CECH) / (G2D*KC3DSQ) BHCE2 = CMPLX (0.0, BHCE1) + CMPLX (0.0, BHCE2) BHCE2 = CMPLX (0.0, BHCE1) + CMPLX (0.0, BHCE2) BHCH2 = (VEPS3D*G3D*CFCH) / (WUD*G2D*KC3DSQ) BHCH2 = (VEPS3D*G3D*CFCH) / (WUD*G2D*KC3DSQ) BHCH2 = (CUPS BECFC + CC1CH2, 0.0) BHCH2 = (CUPS BHCH1, 0.0) - CMPLX (BHCH2, 0.0) BHCH2 = (CWPLX (-BHCH1, 0.0) - CMPLX (BHCH2, 0.0) BHCH2 = (VEPS3D*G3D**2*KC2DSQ) **2*CFCFC) / ((WEPS2D*G2D* BHCH2 = (WEPS3D*G3D**2 *KC2DSQ) **2*CFCFC) / ((WEPS2D*G2D* BHCH2 = (WEPS3D*G3D**2 *KC2DSQ) **2*CFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*G3D*2) **2 * CC2DSQ) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*G3D*2) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS3D*2) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*G3D*2) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*G3D*2) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*G3D*2) **2 * CCFCFC) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*CFCFCFC)) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*CFCFC)) / ((WFPS2D*G2D* BHCH2 = (WFPS2D*CFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFCFC)) / ((WFPS2D*CFCFC)) / ((WFPS2D*CFCFCC)) / ((WFPS2D*CFCFC)) /</pre>	<pre>EBECP=BEEIP+BEBE3P BHBHIP= (\LFP\$BETAD*(KC3D5G)**2) (AUD*G2D*KC3D5G)**2) BHBH2P= (ALFD*BETAD*(KC2D5G)**2) (WUD*G2D*KC3D5G)**2*CC4C4C7)/(G2D*KC3D5Q*TFN23*CECHP)/ BHBH3P= (VFD2D5G*TFN23)*2*CF0CHCP)/(G2D*KC3D5Q)**2) BHBH3P= (KC2D5G*TFN23)*2*CF0CHCP)/(G2D*KC3D5Q)**2) BHBH1P=(WEP53D*G3D*2*C5CF0P)/(G2D*KC3D5Q)**2) BHBH1P=(WEP53D*G3D*2*C5CF0P)/(WEP52D5Q-KC3D5Q)* BEBH1P=(WEP53D*G3D*2*C2D5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH3P=(WEP53D*G3D*2*C2D5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH3P=(WEP53D*G3D*2*C3C6CD5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH3P=(WEP53D*C3*C3D5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH3P=(WEP53D*C3*C3D5Q**2*C5D5Q)*C2D5Q)*C2D5Q*TFN23*WMUD) BEBH4P=(WEP52D*C3D*2*C3*C3D5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH3P=(MEP52D*C3D5Q**2*C6CHP)/(WEP52D*G2D**2* BEBH4P=(WEP53D*C3*C5C5D5Q**2)*(C3D5Q)*C2D5Q)*C3D5 BEBH4P=(WEP53D*C3*C5C5D5Q**2)*(C3D5Q)*C2D5Q*TFN23 BEBHCP=CPECPC (WEP52D*C2D**2*KC3D5Q**C2D5Q)*C2D5Q)*C2D5Q*TFN23 BEBHCP=CPECPCPC BEBHCP=CPECPCFD*2*C5KC3D5Q)*C2D5Q)*CC3D5Q*TFN23 BECH1P=(WEP53D*C5KC3D5Q)*C2D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5S) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5D5Q)*C5D5Q)*CC3D5Q)*CC3D5Q BECH2P=(ALFD*BETAD*(KC3D5Q)*C5D5Q)*C5D5Q)*CC3D5Q) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q)*CC3D5Q) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q)*CC3D5Q) BECH2P=(ALFD*BETAD*(KC3D5Q)*C5D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q)*C5D5Q)*C5D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q)*C5D5Q)*C5D5Q)*C5D5Q)*C5D5Q)*C5D5Q)*C5C5C7P)/(WEP52D*G2D*KC3D5Q)*C5D5Q)*C5C5D5Q)*C5C5D5Q)*C5D5Q</pre>
---	---

ပပ

POV	BHCECP=CMPLX(0.0, BHCE1P)+CMPLX(0.0, BHCE2P) BHCCEPP=DHCECP BHCCEPP=DHCECP BHCCEPP=(WEPS3D*623bc3D*CCECECP)/(WEPS2D*C3DSQ)BECE1P=(WEPS3D*8C3DSQ)CCECP)/(WEPS2D*C3DSQ)BECE2P=(ALFD*BETAD*(KC3DSQ-KC2DSQ)*CECHP)/(WEPS2D*C3DSQ)BHCH1P=(ALFD*BETAD*(KC3DSQ-KC3DSQ)*CECHP)/(WUD*G2D*KC3DSQ)BHCH1P=(ALFD*BETAD*(KC3DSQ-KC3DSQ)*CECHP)/(WUD*G2D*KC3DSQ)BHCH1P=(ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECHP)/(G2D*KC3DSQ) BHCH2P=(KC2DSQ*TFN23*CHCHCP)/(G2D*KC3DSQ)*CECHP)/(WUD*G2D*KC3DSQ)BHCH1P=(ALFD*BETAD*(FC2DSQ-KC3DSQ)*CECHP)/(G2D*KC3DSQ) BHCH2P=(KC2DSQ*TFN23*CHCHCP)/(G2D*KC3DSQ)) BHCH2P=(KC2DSQ*TFN23*CHCHCP)/(G2D*KC3DSQ)) BHCH2P=(KC2DSQ*TFN23*CHCH2P)/(G2D*KC3DSQ)*CECHP)/(FC2DSQ*KC3DSQ) BHCH2P=(KC2DSQ*TFN23*CP)/(G2D*KC3DSQ)*CECHP)/(FC2DSQ*KC3DSQ)) BHCH2P=(KC2DSQ*TFN23*CP)/(G2D*KC3DSQ)*CECHP)/(FC2DSQ*KC3DSQ)) BHCH2P=(KC2DSQ*TFN23*CP)/(G2D*KC3DSQ)*CECHP)/(FC2D*KC3DSQ)/(FC2DSQ*KC3DSQ))/(WUD*G2D*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2DSQ*KC3DSQ)/(FC2D*KC3DSQ)/(FC2D*KC3DSQ)/(FC2D*KC3DSQ)/(FC2DSQ*KC3DSQ/KC3DSQ/KC3DSQ/KC3DSQ/KC3DSQ/KC3DSQ/KC3DSQ/KC3DSQ/KC3D
	$ \begin{array}{l} P2 J = 2 \cdot \text{*TFNS} 02 / 62D \\ P2 I = \left(P2 A *BEBEC+P2B*BHBHC+P2C*CECEC+P2D*CHCHC+C*P2E*(BECHC+BHCCE) - C*P2F*(BECH+BHCCE) \right) \times \left(-2 \right) \times \left(-$
	DEDEC= (KC2DSQ**2*(1.+TFNSQ3)*CECEC)/(KC3DSQ**2*TFNSQ3) DHDHC= (KC2DSQ**2*(1.+TFNSQ3)*CHCHC)/(KC3DSQ**2) DEDH = (KC2DSQ**2*(1.+TFNSQ3)*CECH*G3D)/(KC3DSQ**2) DEDHC= CMPLX(DEDH,0.0) DECDH= DEDHC DECDH= DEDHC
P0(<pre>VER IN REGION 3 P31=(BETAD*WEPS3D*ALFD**2*DEDEC/G3D)+(BETAD*WMUD*G3D*DHDHC)+ DETAD**2*ALFD*DEDHC)+(K3DSQ*ALFD*DECDH))*(2.*G3D*H20VD- SIN(2.*G3D*H20VD)) P32=((BETAD**2*ALFD*DEDHC)-(K3DSQ*ALFD*DECDH))*(2.*G3D*H20VD+ (BETAD**2*ALFD*DEDHC)-(K3DSQ*ALFD*DECDH))*(2.*G3D*H20VD+)</pre>

1 29 1 1 1 1 1 1 1 1	<pre>F31N(2,*G3D*H2OVD)) E31N(2,*G3D*H2OVD)) G0 T0 30 BEBE1= (WEPS3p*G3D**2*KC2DSQ)*2*CECEC)/((WEPS2D*G2D*KC3DSQ* BEBE2= (UPEPS3p*G3D**2*KC2DSQ)*2*CECEC)/((WEPS2D*G2D*KC3DSQ* BEBE2= (WEPS2D*G2D*KC3DSQ)*2*CECEC)/((WEPS2D*G2D*KC3DSQ)* BEBE3= (ALFb*BETAD*(KC3DSQ)**2*TFN23) BEBE2= (ALFb*BETAD*(KC3DSQ)**2*TFN23) BEBEC= BEBE1+BEBE2+BEBE3 BEBEC= BEBE1+BEBE2+BEBE3 BEBH1= (WEPS2D*C3DSQ)**22 %CC3DSQ) **2 %CC3DSQ **2 %C20SQ **2 %C20SQ **2 %C20SQ **2 %C20SQ *</pre>
4	BECBH= -BEBHC BECH1 = (WEPS3D*63D**2*KC2DS9*CECH)/(WEPS2D*62D*KC3DS9*C3DSQ) BECH2 = (WEPS3D*63D**2*KC2DS9*CECH)/(WEPS2D*62D*KC3DSQ) BECH2 = (ALFD*BETAD*(KC3DS9-KC2DS0)*CHCH2)/(WEPS2D*62D*KC3DSQ) BECCH= -BECHC BECCH= -BECHC BHCE1 = (ALFD*BETAD*(KC2DS0-KC3DS0)*CECEC)/(WMUD*62D*KC3DSQ) BHCE2 = (ALFD*BETAD*(KC2DS0+KC3DS0)*CECEC)/(WMUD*62D*KC3DSQ) BHCE2 = (ALFD*BETAD*(KC2DS0+KC3DS0)*CECEC)/(WEPS2D*KC3DSQ) BHCE2 = (ALFD*BETAD*(KC2DS0+KC3DS0)*CECEC)/(WEPS2D*KC3DSQ) BHCE2 = CMPLX(0.0, BHCE1) - CMPLX(0.0, BHCE2) BHCE2 = CMPLX(0.0, BHCE1) - CMPLX(0.0, BHCE2) BHCE2 = CMPLX(0.0, BHCE1) - CMPLX(BECE2, 0.0) BHCE2 = CMPLX(BECE1, 0.0) + CMPLX(BECE2, 0.0) BHCE2 = CMPLX(BECE1, 0.0) + CMPLX(BECE2, 0.0) BHCE2 = CMPLX(BECE1, 0.0) + CMPLX(BHCH2, 0.0) BHCH1 = (ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECH)/(WEPS2D*KC3DSQ) BHCH2 = (KC2DSQ*TFN23*CHCHC)/(G2D*KC3DSQ)*CECH)/(WHUD*G2D*KC3DSQ) BHCH2 = (KCPB*BETAD*(KC2DSQ-KC3DSQ)*CECH)/(WHUD*G2D*KC3DSQ) BHCH2 = (KCPB*BETAD*(KC2DSQ-KC3DSQ)*CECH)/((WFPS2D*KC3DSQ) BHCH2 = (KEPS3D*G3D**2*KC2DSQ)**2*CCCFCP)/((WFPS2D*KC3DSQ)*

ပပပ

ပပ

	TFN03) 220)
	BEBE2P=(27.*()EPS3D*63D**2*KC2DS0*ALFD*BETAD*(KC3DSQ-KC2DSQ)* CFCHP)///()EPS3D*C3D*C7D*C7D*C7D*C7)**3*TEN33)
	BEBE3P=((ALF6)*BETAD%(KC3DS0-KC2DS0))**2%CHCHCP)/ //weps0n%c3D%c3DS0)%*2)
	BEBECP = BEBEIP = BEBE2P = BEBE3P = / BHBH1P = ((ALFD*BETAD*(KC2DSQ-KC3DSQ)) **2*CECECP) /
	BHBH2P= (WMUD*GZD*KC3DSQ) * * 2) 2 2 * ALFD*BETAD* (KC2DSQ-KC3DSQ) * KC2DSQ*TFN23 * CECHP) / 7 4 Min* 5 * * C 5 D * * C 3 D * C * S * S * C * C 3 D * C * C * C * C * C * C * C * C * C *
-	ВНВНЗР= (MC2DSO%TFN2S) 2824 275 ВНВНЗР= (MC2DSO%TFN2S) 2824 275 ВНВНСР= АНВН1 Р- КНЯН2Р+ КНЯН3Р, ((G2D*KC3DSQ) **2)
	BEBHIP= (WEPS3D*63D*2 *KC2D50*4LFD*BETAD* (KC2D50-KC3DSQ)* CECECP) / (WEPS2D*62D*2 *KC2D50*42 *KC3D50*2 * TFN23 * WMUD)
Ч	BEBH2P = (WEPS3D*63D**2*KC2DSQ**2*CECHP)/(WEPS2D*G2D**2* KC3DSQ**2) DEBH2P = //11EH4=E4/10C3D50/10C3D50/1044940ECHD)/
Ч	bebhjf=((alfu*beiau*(kojusu+kojusu)) **********************************
	BEBHCP=CMPLX(0,0,-BEBH1P)+CMPLX(0,0,BEBH2P)+
-	UMFLA(0.0, BEBHJZ) BECBHP=-BEBHCP DECH11D-(UEDE 3D*<3D**3*/C3DEO*CECUD)//UEDE3D*/C3DEO*TEN33)
	BECH2P= (MEF 3) D = C = C = C = C = C = C = C = C = C =
	BECCHP=-BECHCP BHCE1P=(ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECECP)/(WMUD*G2D*KC3DSQ) BHCE2P=(KC2DSQ*TFN23*CECHP)/(G2D*KC3DSQ),
	BHCECP=CMPLX(0.0, BHCE1P)-CMPLX(0.0, BHCE2P) BHCCEP=-BHCECP
	BECEIP=(WEPSJD*G3D**Z*KC2DSU*CECECP)/(WEPSZD*G2D*KC3DSU*TFNZ3 BECE2P=(ALFD*BETAD*(KC3DSO-KC2DSO)*CECHP)/(WEPS2D*G2D*KC3DSQ) BECECP=CMPLX(BECE1P,0.0)+CMPLX(BECE2P,0.0)
	BECCEP=BECECP BHCHIP=(ALFD*BETAD*(KC2DSQ-KC3DSQ)*CECHP)/(WMUD*G2D*KC3DSQ)
	BHCHZP = (KCZDSQ~TFNZ3~CHCHCP)/(GZD~KC3DSQ) BHCHCP = CMPLX(-BHCH1P,0.0)+CMPLX(BHCH2P,0.0)
	BACCAR = BACACR
POW	ER IN REGION 2 P2A=BETAD*WEPS2D*ALFD**2 P2B=BETAD*WMUD*ALFD**2 P2C=BETAD*WEPS2D*62D**2
	P2E=BETAD**WMUD~G2D~~2 P2E=BETAD**2*ALFD*G2D P2F=K2DSQ*ALFD*G2D

ပပပ

$ \begin{array}{l} P2G=BETAD*WEPS2D*(ALFD**2+G2D**2)\\ P2H=BETAD*WMUD*(ALFD**2+G2D**2)\\ P2I=2:*TFN22/G2D**2\\ P2J=2:*TFN22/G2D**2\\ P2J=2:*TFN22/G2D**2\\ P2J=2:*TFN202/G2D\\ P2I=(P2A*BEBEC+P2B*BHBHC+P2C*CEECEC+P2D*CHCHC+C*P2E*(BECHC+BHCCE))*(-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, $	DEDEC= (KC2DSQ**2*(1TFNSQ3)*CECEC)/(KC3DSQ**2*TFNSQ3) DHDHC= (KC2DSQ**2*(1TFNSQ3)*CHCHC)/(KC3DSQ**2) DEDH = (KC2DSQ**2*(1TFNSQ3)*CECH*G3D)/(KC3DSQ**2) DEDHC= CMPLX(0.0,DEDH) DECDH = DEDHC DECPE (KC2DSQ**2*CECEC)/(KC3DSQ**2*TFNSQ3) DECDHP = (KC2DSQ**2*CECEC)/(KC3DSQ**2*TFNSQ3) DEDHP = (KC2DSQ**2*CECEC)/(KC3DSQ**2*TFNSQ3) DEDHP = (KC2DSQ**2*CECEC)/(KC3DSQ**2*TFNSQ3) DEDHP = (KC2DSQ**2*CECEC)/(KC3DSQ**2) DEDHP = DEDHCP	POWER IN REGION 3 P3A=BETAD*WEPS3D*ALFD**2 P3A=BETAD*WED53D*A2 P3B=BETAD*WEP53D*A2 P3C=BETAD*WFUD*G3D P3C=BETAD*WFUD*G3D P3C=BETAD*WFUD*ALFD*2 P3C=BETAD*WFUD*ALFD*2 P3C=BETAD*WFUD*ALFD*2 P3C=2 *TFN23/G3D**2 P3C=2 *TFN23/G**2 P3C=2 *TFN23/G3D**2 P3C=2 *TFN23/G3D**2 P3C=	30 PWR=PWR+P1+P2+P3 PWR1=PWR1+REAL(P1) PWR2=PWR2+REAL(P2) PWR3=PWR3+REAL(P3)
--	---	--	---

ပပ

υU

I/EPSR1,EPSR2,EPSR3,H10VD,H20VD,B0VD 2/C2PI,C2PISQ,PI 3/D0VL,W0VB 3/D0VL,W0VB 5/XC0NST C2PI*D0VL/LP0VL MMAX=INT((XCONST*BOVW)/C2PI) MMAX=40 FREQ, D/L, LP/L, IMPEDANCE F8.3 *REAL(PWR)/BOVD) FREQ,IMP FREQ,LPOVL,IMP SUMMATION ON N PWR1=F PWR2=F PWR2=F (WUVE: GT: 40)
1 M=1, MMAX
11 M=1, MMAX
N=M-1
ALFD=N*C2PI/ CALL GRN11(A) REAL LEOUL COMMON/C1/E COMMON/C2/C COMMON/C3/D COMMON/C3/D BETAD = C2P ALFD ALFD IF IF CONTINUL WRITE WRITE CONTINUE STOP WOVB E WOVB L = IWN FORMAT CAL SPECIFY IF (WO IF (WO IF (MO BOVW SUN DO G11 = 7 MMAX = SUM1 = 14 127 * 0 J C C C C C

II CONTINUE RETURN	SUBR ^{5NW} ************************************	A PUNCTION A ****VARIABLE DEFINITIONS ************************************	D11 D21 D22 D22 G1D5Q	G3DSQ G11A G11A G11A	GIID GIID GIID	KC1DSQ KC2DSQ **** KC3DSQ	TFN1 TFN2 TFN3	WEPSID WEPS2D WEPS3D	المعلم المعلم المعلم المعلمين المعلمين المعلمين المعلمين المعلمين المعلمين المعلمين المعلمين المعلمين المعلمي COMMON/C1/EPSR1.EPSR2,EPSR3,H10VD,H20VD,B0VD COMMON/C3/C3DT 7,0DTSO,DT	REAL KCIDSO KC2DSO KC3DSO LPROVL, LOVLPR CALCULATE VARIABLES DEPENDENT ON FREQUENCY WMUD=60.*C2PISO*DOVL	WEPSID=EPSR1*DOVL/60. WEPS2D=EPSR2*DOVL/60. WEPS3D=EPSR3*DOVL/60. CALCULATE_VARIABLES DEPENDENT ON FRRQUENCY AND BETAD	BETDSQ=BETAD**2 KCIDSQ=C2PISQ*EPSR1*D0VL**2-BETDSQ
	0 000	20000	00000	00000	0000	0000	0000	0000	50	0	C	
KC2DSQ=C2PISQ*EPSR2*DOVL**2-BETDSQ KC3DSQ=C2PISQ*EPSR3*DOVL**2-BETDSQ CALCULATE VARIABLES DEPENDENT ON FREQUENCY, BETAD AND ALFD ALFDSQ=ALFD**2 G1DSQ=ALFD**2 G2DSG=ALFDSA-KC3DSQ G2DSG=ALFDSA-KC3DSQ G2DSG=ALFDSA-KC3DSQ	ČÁLL TFN (GIĎSO, HIOVD, TFN1) CALL TFN (G2DSO, H2OVD, TFN2) CALL TFN (G3DSQ, H2OVD, TFN3) D11=-KC2DSQ*(I:+(WEP\$3D*G3DSQ*KC2DSQ*TFN2)/(WEP\$2D*G2DSQ*KC3DSQ* 1TFN3) D12= (ALFD*BETAD? (WEP\$2D*G2DSQ))*((KC2DSQ/KC1DSQ) -1.)*KC2DSQ D21=-ALFD*BETAD? (KC2DSQ/KC1DSQ)) ((WEP\$S3D*KC2DSQ?G3DSQ*TFN2) / 1 (WEP\$2D*KC3DSO*G2DSQ*TFN3)) ((ALFDSQ?BETDSQ) / (G2DS	<pre>L*WHUD*WEF52U))*(KC2U5Q/KC3U5Q)-1.)) DET=D11*D22-D21*D12 CALCULATE G11 G11B= (KC2DSQ*D12*ALFD*BETAD*KC2DSQ*TFN2)/(DET*WMUD*G2DSQ*KC3DSQ) G11B= (KC2DSQ*D12*ALFD*BETAD*TFN2)/(DET*WMUD*G2DSQ*KC3DSQ) G11C=(KC2DSQ*D11*KC2DSQ*TFN3)/(DET*KC3DSQ*G2DSQ) G11D= (KC2DSQ*D11*KC2DSQ*TFN2)/(DET*KC3DSQ*G2DSQ) G11E= (KC2DSQ*D11)*(DET*TFN2) G11E= (KC2DSQ*D11)/(DET*TFN2)</pre>	KETURN SUBR************************************	GIDSQ HIOVD TFNI = THE RETURNED VALUE *****VARIABLE DECLARATION************************************	<pre>IF(ARG.LE.0.) G0 T0 L IF(ARG.GT.0.) AND.(ARG.LT.100.)) G0 T0 2 IF(ARG.GE:100.) G0 T0 3 1 TFNI=-GID*TAN(GID*HIOVD) C T0 4 2 TFNI=GID*TANH(GID*HIOVD) 3 TFNI=GID</pre>							
--	---	---	--	--	---							
	Q* 2DSQ	sQ)	ન્દ્રેય નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ નુંદ	र नेर नेर नेर वेर								

 ${
m END}_{
m SUBR}$ ******************* GID GIDSQ HIOVD TFNSQI = THE RETURNED VALUE CIDESQRT(ABS(GIDSQ)) ARG=GIDSQ*HIOVD*22 IF(ARG.LE.0.) GO TO 1 IF(ARG.LE.0.) GO TO 1 IF(ARG.LE.0.) GO TO 1 IF(ARG.LE.0.) GO TO 1 2 TFNSQI=(TAN(GID*HIOVD)))**2 3 RETURN -}; * * -35 C GID C GIDSO C HIOVD C TFNI = THE RETURNED VALUE G TD = SORT (ABS (GIDSO)) ARG = GIDSO %HIOVD ** 2 I F (ARG - LE 0) G TO 1 I F (ARG - LE 0) G TO 1 I F (ARG - GT 0) G TO 2 I TFN2I = GID * TANH (GID * HIOVD) 3 RETURN RETURN 4 C C

LIST OF REFERENCES

- 1. Meier, P.J., "Integrated Fin-line Millimeter Components," <u>IEEE</u> <u>Transactions</u> on <u>Microwave</u> <u>Theory and</u> <u>Techniques</u>, vol. <u>MTT-22</u>, pp. <u>1209-1216</u>, <u>Deccember</u>
- 2. Itoh, T., "Spectral Domain Analysis of Dominant and Higher Order Modes in Fin-lines," <u>IEEE MTT-S Symposium</u> <u>Digest</u>, pp. 344-345, May 1979.
- 3. Knorr, J.B. and Shayda, P.M., "Millimeter Wave Fin-line Characteristics," <u>IEEE Transactions on</u> <u>Microwave Theory and Techniques</u>, vol. MTT-28, pp. 737-743, July 1980.
- 4. Knorr, J.B., "Equivalent Reactance of a Shorting Septum in a Fin-line: Theory and Experiment," <u>IEEE</u> Transactions on Microwave Theory and <u>Techniques</u>, vol. MTT-29, pp. 1196-1202, November 1981.
- 5. Knorr, J.B. and Kuchler, "Analysis of Coupled Slots and Coplanar Strips on Dielectric Substrate," <u>IEEE</u> <u>Transactions on Microwave</u> <u>Theory</u> <u>and</u> <u>Techniques</u>, vol-23, pp. 541-548, July 1975.
- 6. Itoh, T. and Mittra, R., "Dispersion Characteristics of Slot Lines," <u>Electronic Letters</u>, vol.7, pp. 364-365, July 1971.
- 7. Harrington, R.F., <u>Field Computations</u> by <u>Moment</u> <u>Methods</u>, the MacMillan Company, 1968.
- 8. Lagerlof, R.D.E., "Ridged Waveguide for Planar Microwave Circuits," <u>IEEE Transactions on Microwave</u> Theory and <u>Techniques</u>, vol. MTT-21, pp. 499-501, July 1973.
- 9. Vartarnian, P.H., Ayres, W.P. and Helgessen, A.L., "Propagation in Dielectric Slab Loaded Rectangular Waveguide," IRE Transactions on Microwave Theory and Techniques, vol. MTT-6, pp. 215-222, April 1958.
- 10. Mariani, E.A., Heinzman, C.P., Agrios, J.P. and Cohn, S.B., "Slot Line Characteristics," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-17, pp. 1091-1096, December 1969.
- 11. Hopfer, S., "The Design of Ridged Waveguides," <u>IEEE</u> Transactions on Microwave Theory and <u>Techniques</u>," <u>Vol.</u> MTT-3, pp. 20-29, October 1969.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Library, Code 0142 NAval Postgraduate School Monterey, California 93943		2
2.	Department Chairman, Code 62 Department of Electrical and Computer Engi Monterey, California 93943	neeing	1
3.	Professor Jeffrey B. Knorr, Code 62Ko Department of Electrical and Computer Engi NAval Postgraduate School Monterey, California 93943	neeing	2
3.	Professor H. M. Lee, Code 62Lh Department of Electrical and Computer Engi NAval Postgraduate School Monterey, California 93943	neeing	1
4.	Major Kim, Byungyong Dobong-gu Uelgue-1dong 407-3 Seoul, Korea 132-00		2
5.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2

.

199 619

